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Foreword

This volume is a selection of best papers presented at the CoreGRID Inte-
gration Workshop 2008 (CGIW’2008), which took place on 2–4 April 2008 in
Hersonissos, Crete, Greece.

The workshop was organised by the Network of Excellence CoreGRID
funded by the European Commission under the sixth Framework Programme
IST-2003-2.3.2.8 starting September 1st, 2004 for a duration of four years.
CoreGRID aims at strengthening and advancing scientific and technological ex-
cellence of Europe in the area of Grid and Peer-to-Peer technologies. To achieve
this objective, the network brings together a critical mass of well-established
researchers from forty institutions who have constructed an ambitious joint
programme of activities.

The goal of this regular workshop is to promote the integration of the Core-
GRID network and of the European research community in the area of Grid and
P2P technologies, in order to overcome the current fragmentation and duplica-
tion of efforts in this area.

The list of topics of Grid research covered at the workshop included but was
not limited to:

knowledge and data management;

programming models;

system architecture;

Grid information, resource and workflow monitoring services;

resource management and scheduling;

systems, tools and environments;

trust and security issues on the Grid.

Priority at the workshop was given to work conducted in collaboration between
partners from different research institutions and to promising research proposals
that can foster such collaboration in the future.

The workshop was open to the members of the CoreGRID network and also
to the parties interested in cooperating with the network and/or, possibly joining
the network in the future.
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Abstract gCube Information Retrieval Engine differentiates from federated search. Data
and services are scattered over the infrastructure instead of being contained
in confined sub-sections, made accessible via narrow interfaces. Grid, where
gCube runs, is not meant for interactive work, but offers a vast pool of resources
for processing large amounts of information. In such domain it comes as natural
consequence the preference of machinery that can employ the afforementioned
resources for offering a different range of services, over a traditional search fa-
cility.

Keywords:
flow Execution

1. Introduction
In traditional Information Retrieval (IR), managed or federated, systems ex-

ploit domain-specific constructs targeting the needs of a particular application
scenario. Query execution on these systems generally assumes that the way to
exploit resources is predefined, while the optimal roadmap to obtain results is
roughly known a-priori to the system (in contrast to RDBMSs), with minimal
potential deviations driven from cardinalities and resource availability - in face
of failures and load.

These, otherwise stable assumptions, do not hold in case of Virtual Research
Environments (VREs) [2]. In these environments, the size and type of informa-
tion managed and the ways it can be exploited, might vary significantly due to
different user / application needs, a challenge which grows under the perspec-
tive of hosting them on a dynamic, uncontrolled vast environment, such as a
computational grid.

Under the herein described gCube framework [1], the aforementioned chal-
lenges are handled through the innovative approach of dynamic composition

Optimisation, Process Scheduling, Information Retrieval, Grid Computing, Work-
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and execution of workflows of services that, step-by-step, carry out the in-
dividual tasks implied by an information retrieval request, in a near optimal
manner.

The rest of this paper is structured as follows: in section 2 we present the
rationale behind the complex Information Retrieval mechanism of gCube and
background information on the framework’s fundamental concepts and tech-
nologies. We describe in more details the gCube framework, in section 3, and
we unveil the details of how a simple user query is transformed into a standard-
based graph of service invocations and subsequently gets executed. The system
evaluation is presented in section 4 along with intentions for future work and
system enhancements.

2. Background Information
2.1 gCube

gCube is a middleware for the realisation of Virtual Research Environments
on top of a grid-enabled infrastructure. Being multidisciplinary in nature,
spreads over domains which, among others include: Knowledge Management /
Information Retrieval, Data Management / Data Processing, Distributed Com-
puting, Resource Management, Service Semantics Definition and Service Or-
chestration. In the context of this paper we introduce Workflows as a mecha-
nism that enables Information Retrieval on the Grid Computing domain:

In Grid Computing, a Computational Grid [4] represents a vast pool of
resources, interconnected via networks and protocols, that form the substrate
where storage and computational demands can be satisfied at large, in a cross-
organisational scope. The enabling software (middleware) that brings the in-
frastructure together and its capabilities can vary significantly, yet, it is gen-
erally expected that it offers mechanisms to allow infrastructure and security
management, such as information services, authentication mechanisms etc.

Information Retrieval is an empowering concept [5], of Knowledge Man-
agement, satisfied nowadays mainly through two architectural models: au-
tonomous systems and federated ones, the latter being a model which fits the
SOA paradigm and leaves space for independent realisations of local services.
Despite the hard to beat performance of dedicated systems, be it autonomous,
federated, network (web) or desktop based, bringing Information Retrieval to
the Grid is quite attractive because, on this new joint-domain, VREs can ex-
ploit:

shared, generic resources, with significant lower cost than dedicated in-
frastructures, for hosting their Knowledge Banks

large capacities for on demand processing of information beyond the
typical mechanisms of the IR domain
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opportunities for exploiting highly demanding IR techniques over the
hosted content, such as, but not limited to, Feature Extraction and Query
By Example over multimedia content

Under these assumptions, the provision of a standards-based, open system
that allows arbitrary realisation of Information Processing scenarios, utilising
resources not known a-priori, seems to be fundamental for exposing the bene-
fits of IR over the Grid.

gCube middleware attempts to capture the above-mentioned requirements
via a set of specifications and an entire mechanism that transforms user-queries
into workflows of service invocations and subsequently manages all the details
of communication and execution. It builds on top of OGSA, WS-* and WSRF
specifications and exploits the Globus Toolkit 4 provided WS-Core implemen-
tation of WSRF. It offers the means for building, managing and running an
infrastructure that hosts VREs and a complete set of tools for hosting data and
information and exploiting them efficiently in the Knowledge Management do-
main [3].

Among its core constructs and contents, the Information System, is the glue
that keeps the infrastructure together by offering the system-wide registry of
gCube and the machinery to interact with it. The gHN (gCube Hosting Node),
corresponds to the storage / computing resource of the infrastructure, being
correspondent to a container in a physical machine. Registring, exploring,
monitoring and running elements on the infrastructure, all pass through these
two tightly collaborating elements.

On top of gHNs live the Resources, which can be fairly diverse in nature.
Services, Web Service Resources, software components, or even "files" can
be resources that may be published and consumed. Every publishable entity
exposes a profile in the IS, which renders the set of information upon which
it is discovered by its potential consumers. Due to the aforementioned hetero-
geneity of resources in this infrastructure, the profiles are classified in several
subclasses, while more generic ones exist for arbitrary usage. Among these
profiles we distinguish the Running Instance and the WebResource profiles,
which describe entities that contain "executable logic", i.e. web services, un-
der the WS Resource perspective.

2.2 Services and Resources
gCube is inherently Service Oriented. Service Oriented Architecture (SOA)

[6]) is a model ideal for the realisation of large scale systems, essentially dis-
tributed. Composing individual entities (services) that encapsulate state, physi-
cal resources and logic behind narrow interfaces, is achieved via the numerous
protocols on which service interaction is based. The publisher / subscriber
model, for declaring the availability and the requests for consumption of Ser-
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vices, is essential for rendering a Service Oriented System able to modify its
internal flow of information and control and take advantage of the composition
in a manner other than statically binding pieces of logic together.

Service Oriented conceptualisation has received wide acceptance and a wide
proliferation after the emergence of XML based technologies of Web Services /
HTTP / SOAP stack ([8]). The grid computing community, through its official
standardisation body, the Open Grid Forum (OGF), having early recognised
that computational grids should be build on service oriented foundations, has
proposed the Open Grid Services Architecture (OGSA) [10] as the blueprint
for building and deploying grid tools and infrastructures. The cornerstone of
this architecture is the Web Services Resource Framework (WSRF) [9].

Web Services in principle are stateless. They avoid formalising the handling
of state among interactions, letting the designer apply home-grown techniques
for offering feature rich systems, in a similar way this is handled in the stateless
HTTP world. This gap in specification is filled by the WSRF, a set of concepts
([7]), specifications, practices and tools, which do not specify just a formal
way for stateful service interactions but defines the Web Service Resource en-
tity as an undividable, identifiable, discoverable and utilisable composition of
logic, soft-state and physical resources with a life-time. WSRF builds upon
Web Service specifications, like WSDL, WS-Notifications , WS-Addressing
, and adds new ones consequence of its new concepts (XML infoset , WS-
ResourceProperties , WS-Resource Lifetime, ERP etc) ([8]), [9]). These are
currently incarnated in reference implementations such as WS-Core (included
with the Globus Toolkit 4 [11]) that provides the basic tooling for building
Web Service grids. WS Resources are integral part of the gCube architecture
and raise a number of challenges for the workflow composition and execution
engine.

2.3 Workflows on Grids
As will be shortly shown, IR queries in gCube are transformed into work-

flows for execution on the Grid. Naturally Workflow management and process-
ing have attracted tremendous interest in the context of computational grids and
scientific computing [14], being employed by almost every non-trivial compu-
tation / data-intensive application. Under this observation, reuse is quite de-
sirable, thus tools and abstractions are needed to define, execute and monitor
such workflows.

In the business world, WS-BPEL (Business Process Execution Language for
WebServices) [12] has become the standard notation for defining workflows (or
"processes") of web services. The standard is supported by many commercial
and open-source platforms providing tooling for programming, deploying and
executing BPEL processes. Yet, in the context of scientific computing and
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computational grids, BPEL has witnessed limited proliferation till now. This
is mainly due to the fact that the standard unit of execution currently on the
large grid infrastructures, remains the job, rather than the service.

A job encapsulates an application and its dependencies, that is autonomously
being executed on a cloud of physical grid resources. The execution of such
workflows typically is based in the implicit flow of data between jobs, which
can have sequential or parallel control dependencies.

This model of workflow definition is provided by almost all of the popular
workflow tools. For instance Condor [13], one of the most well known middle-
ware for setting up campus-wide and corporate-wide grids, provides DAGMan
(Directed Acyclic Graph Manager). The same approach has been adopted by
gLite middleware [18] developed in the context of EGEE project [17], and
by P-Grade which builds above the previous tools and provides a portal and
workflow execution engine for inter-grid workflows.

On the other hand there exist high level tools that break the barriers of DAGs
and go beyond jobs, either by supporting pure web service integration or hy-
brid solutions, where web services wrap local applications, remote applica-
tions or complete jobs. Nevertheless, the majority of these tools don’t use
any standardised workflow representation and provide capabilities for defining
and running only static workflows. Two good examples of generic engines are
the Taverna and MOTEUR which both use SCUFL (Simple Conceptual Uni-
fied Flow Language) as the workflow description language. Other examples
of traditional scientific workflow tools, with web service extensions, include
Triana, Kepler and Karajan. For more details on the above tools/activities see
[14].K-Wf [15] uses stateful WSRF services as the main unit of execution and
supports knowledge based execution in which the workflow enactment is based
on stored ontologies of the subsystems involved. It also uses its own workflow
definition language based on Petri-nets.

OGSA-DAI (OGSA-Data Access and Integration) [16], can be also consid-
ered as data-centric workflow execution framework. It captures three aspects of
distributed data-management: acquisition / delivery, processing (transforma-
tions) and transportation. Beside the built-in constructs, extending the frame-
work allows custom application logic to be invoked in all sections of the work-
flow.

2.4 Service Composability
The composability of the various web services into a meaningful workflow

is an essential yet not easily tackled, multifaceted issue:
Service semantics: The roles to be undertaken by an entity in a workflow

is an integral property of the entity. In typical SOA, consumers of services are
a-priori explicit on their requirements. Yet dynamic service composition sce-
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Figure 1. gCube Workflow Composition and Execution Architecture

narios require sufficient flexibility in their selection mechanisms, which can
be achieved by describing the entities at a higher level of abstraction. Ser-
vice Semantics capture not only the internal operation of an entity, but also its
interfacing (parameters / results).

Communication mechanism: The various entities of a workflow commu-
nicate via technologies that are determined by their nature. For instance, in
Web Services, communication is based upon W3C specifications, which, un-
fortunately do not supply sufficient support for managing large data sets or
streams, which pushes towards proprietary implementations.

Data integration: Normalising the data for exchange among the various
stake-holders is prerequisite of composition. Ontologies can be employed for
resolving schema mappings, yet in several cases simpler solutions (direct map-
ping) can be applied. Data integration can be conceived as a sub case of service
semantics, yet in applied systems it is often realised separately with simpler
mechanisms (transformations).

3. Query Processing in gCube
In Figure 1 we render the main operational blocks of gCube workflow com-

position and execution mechanism, which us being s in the following para-
graphs.
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3.1 From query to workflow
gCube search engine exposes its capabilities via a functional, relational-

algebra-like, well-formed query language. By the term "functional" we mean
that every query operation acts as a function that applies to a given set of input
arguments and produces a certain output. In this way, query operations can be
put together, with one consuming the output of the other, forming an operation
tree. Schematically, it resembles lisp function calls, in a pipelined manner. All
traditional relational operations are supported (sort, project, join, etc.) along
with several others stemming from the IR domain, such as full-text , geospa-
tial, and content based search. The functional nature of the query language,
offers true extensibility, allowing developers to add their own custom-made
operations, while conditional execution allows true/false branching.

Behind this language, the framework follows a three step procedure for car-
rying out its operation, roughly assimilating the operation of modern RDBMSs,
with several modifications in order to fit in the distributed nature of wide area
networks and more specifically the Grid:

Query Parsing. User-defined queries are fed to the query parser, which
processes the requests, validates the queries and forms the corresponding in-
ternal query representations as strongly-typed graphs. The validation process
includes checks against data source definition, argument incompatibilities and
obviously the necessary syntactic conformance.

Query Planning. The query planner is responsible for producing an exe-
cution plan that computes the original query expression. This plan is actually a
web service workflow. Its nodes represent invocations of service instantiations
and its edges communication channels between pairs of instantiations, in other
words, producer-consumer relations. The input data stream of the producer
service instance are being transported to the consumer instance for further pro-
cessing via a transportation leveraging mechanism called gRS (gCube Result
Set) [3].

The planner exploits registered service semantic descriptions 1, in order to
decide which service instances can compute given query operations. Through
the same mechanism the instance invocation parameters are generated, in ac-
cordance with the user query expression. Finally, data incompatibilities are
resolved based on (data) source descriptions registered in the infrastructure.

As a result the planner creates an initial (non-optimal) execution plan. Al-
though optimisation and service scheduling are left for subsequent stages, pre-

1metadata descriptions of service capabilities and instantiation procedures, expressed in XML Schema for-
mat [XSD]
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liminary query optimisation is also applied here, based on heuristics and pre-
defined cost estimations that take advantage of IR domain-specific knowledge.

The execution plan, which is still in an internal representation form, goes
through the BPELBuilder component which produces the BPEL process, which
along with some supplementary information, specific to each BPEL implemen-
tation, can be redirected to any BPEL engine. Due to the Workflow creation
cost a caching mechanism is employed which, in the case of identical queries,
requires the minor cost of validating against potential stale instances.

3.2 Process Optimisation
The gCube Process Optimisation Services (POS) implement core function-

ality in the form of libraries and web services for Process scheduling and ex-
ecution planning. POS is comprised by a core optimisation library (POSLib)
and two Web Services (RewriterService and PlannerService) that expose part
of the library’s functionality. POSLib implements three core components of
process optimisation. POS is an integral part of query execution in gCube,
since it is responsible for the optimised scheduling of workflows produced by
the query planner and consequently is a key player in alleviating the grid over-
head in query execution

Rewriter Provides structural optimisation of a process. It receives as input
a BPEL process, analyses the structure, identifies independent invocations and
formulates them in parallel constructs (BPEL flow elements) in order to accel-
erate the overall process execution. It is the first step of optimisation that takes
place before the process arrives at the execution engine.

Planner Performs the pre-planning of the process execution. Receives an
abstract BPEL process and generates various scheduling plans for execution.
The generation of an executable plan implies that all references to abstract ser-
vices are replaced by invocations to concrete, instantiated services in a gCube
infrastructure. The Planner uses information provided by the gIS which keeps
up-to-date metrics for resources employed in the grid (physical machines, ser-
vices, etc). This information is input to various cost functions (applied by the
paired Cost Estimator) that calculate the individual execution cost of a candi-
date plan.

The selection of best plans is performed by a custom implementation of the
Simulated Annealing algorithm. The outcome of the planning is a set of exe-
cutable BPEL processes that are passed to the workflow execution engine. Cost
calculation can be guided by various weighted optimisation policies passed by
the author (human or application) of the BPEL process inside the BPEL de-
scription.

ActivePlanner Provides run-time optimised scheduling of a gCube process.
It is invoked during the process execution before any invocation activity to en-
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sure that the plan generated by the Planner (during pre-planning) is still valid
(e.g. the selected service end-point is still reachable) and optimal (according
to the user-defined optimisation policies). If any of the former criteria has been
violated the ActivePlanner re-evaluates a optimal service instance for the cur-
rent process invocation. It can also work without pre-planning being available.

3.2.1 Optimisation Policies. The Planner and ActivePlanner compo-
nents perform optimised scheduling of abstract BPEL processes based on user
defined policies. Optimisation policies are declared within the BPEL docu-
ment and can apply to individual partnerLinkTypes or to the whole process.

The selection of a specific Web Service instance to be used in a particular
process invocation is driven by the optimisation policy applied either on the
process level or on a partnerLink level. Currently POS supports six different
optimisation policies:

Host load: Hosts with the lowest system load take precedence.
Fastest CPU: Hosts are ranked based on their CPU capabilities and the best

is selected.
Memory Utilisation: Hosts are ranked according to the percentage of avail-

able memory as reported by the Java VM. The one with the highest percentage
is selected.

Storage Utilisation: Hosts are ranked according to their total available disk
space. The one with the larger available space is preferred.

Reliability: Hosts are ranked based on their total uptime. Precedence is
given to hosts which have been running without interruption for longer time.

Network Utilisation: When the Planner evaluates multiple possible schedul-
ing plans it will show preference to those plans where the web services are
located close to each other (based on the reported host locality information).
The Planner will avoid co-scheduling invocations to the same host in order not
to overload it.

3.2.2 BPEL Optimisation Extensions. gCube POS functionality heav-
ily depends on the BPEL standard (notation based on BPEL4WS v1.1). BPEL
XML schema has been extended to include optimisation information such as
process policy information per partnerLinks, the definition of abstract or con-
crete services, allocation relationship between invocations etc.

To define process wide optimisation policies we introduce the optimisation-
Policy attribute at the BPEL process element. For example the process defined
by the BPEL excerpt in Figure 2 will be scheduled according to the fastest cpu
policy (with higher weight) and the storage utilization policy (lower weight).

If no policy is defined the default used is the host load policy.
The policies defined on process-wide level pertain the planning of all part-

nerLinks included in the process unless a specific policy is defined on the part-
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Figure 2. Process wide optimisation policy definition in BPEL

nerLink element. To define such policy we use the partnerLinkPolicyType at-
tribute of the BPEL partnerLink element. This attribute is used similarly to
the above example, except that the network utilization policy, if defined, is ig-
nored, since this policy makes sense only for the whole process and not for a
particular web service.

3.3 Execution Stage
Apart from the execution engine, which does not fall within the scope of this

paper and can be mostly outsourced, two important aspects of the Execution
Stage are the services themselves and the data transport mechanism. Although
potentially any Web Service can be employed in such a workflow as long as
it gets sufficiently described for the framework, gCube comes with a rich set
of components that implement core logic of structured and semi-structured
data processing and information retrieval. Furthermore, as already mentioned,
gRS is the special mechanism employed for data transports, that overcomes
conceptual limitations and performance issues of Web Services and actually is
the means via which data are streamed back to their requester.

4. Evaluation - Future Work
One inherent problem of Web Services based interactions is that they are

not designed for low-latency, high-speed data transfers, while the SOAP pro-
cessing stack, in practice proves to be quite a bottleneck for High Performance
Computing.

The gCube framework has been exposing its facilities to selected user com-
munities, through a Web Based user interface, which has given valuable feed-
back to the implementation team. Although the performance for interactive
use cannot yet compete with the well known search facilities, the results are
quite encouraging. Several optimisations, at various levels, allow for an ac-
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ceptable response of the system to the interactive user even in non-optimally
allocated resource schemes. The benefits of the system are materialised when
the infrastructure is automatically reorganised and when data / computing in-
tensive operations take place, such as the on-the-fly production of thumbnails
of 100MB-sized images, or the extraction of the features of 1000s of images,
without the employment of a pre-allocated infrastructure.

Practical issues rise with caching mechanisms, due to the size of the infor-
mation they target and partially the insufficient support by underlying systems,
which upon departs and arrivals of resources might become stale for short pe-
riods.

Today, gCube framework has reached a mature stage and is currently un-
der way to production environments [19]. In this operational context, beyond
the primary objective of maximum robustness, the aspects of optimisation and
openness will be further elaborated. Optimisation techniques currently under
development will exploit intermediate size estimations methods (via statistics,
curve fitting etc). Steps considered for the future include rate-based optimi-
sation methods for streamed flows and ontological matching of services. A
low-level step towards performance will be the ability to dynamically combine
executables (jars) under the encapsulation of a hosting web service.

Finally, driven from user requirements and system evolution, the Query Lan-
guage will be revised in order to allow seamless integration of fundamentally
different data sources.
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1. Introduction

In recent years Model-Driven Engineering (MDE) [11, 6] has emerged as a
means of employing abstraction to allow exploration of properties of a system
free of implementation detail. MDE advocates building models of systems to
be implemented, reasoning informally about these models (for example, com-
paring alternative designs, identifying bottlenecks, etc.) and then developing
code from these models, ideally automatically or semi-automatically.

In many ways MDE is similar in intent, if not in style, to Formal Methods
(such as B [4], VDM [7]). A formal method requires a developer to provide
a specification of a system written in a mathematically precise (i.e. formal)
notation. The developer may then prove properties of the specification before
committing to implementation. The implementation may proceed through a
series of refinement steps, which can be proven consistent. The requirement for
such (expensive) mathematical precision may have been a contributory factor
to the limited uptake of Formal Methods.

In earlier work [1–3] we presented a semi-formal approach to the devel-
opment of grid software. The approach draws upon ideas from both Formal
Methods and MDE: we use a formal notation (Orc [8]) to describe different
designs of grid software, together with an informal style of reasoning about
the properties of the designs. Orc is suitable for the description of such soft-
ware [12] as it has been designed explicitly as an orchestration language for
distributed services. Orc has the benefit of being a formal notation in the sense
that it is a small abstract notation (like traditional process algebras) amenable
to reasoning, while at the same time (unlike traditional process algebras) it has
a syntax which is appealing to the programmer and thus allows the description
of highly readable designs and the development of informal arguments which
reference code extracts.

Here we extend our earlier work, again in the spirit of MDE, by addressing the
issue of generation of implementations from models. We describe O2J, a Java
library that supports the semi-automated development of grid implementations
from Orc models. The idea of such a system was introduced briefly in [3]
where we described a preliminary version of O2J. Here we present a detailed
description of the O2J library together with sample translations and a step-by-
step guide indicating how the developer may use O2J to support the development
of grid software.

2. Orc specification of distributed (grid) applications

In this section we present a simple example to motivate the approach and
provide an orchestration expression to illustrate the use of O2J. First we briefly
summarise the Orc notation.
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2.1 The Orc notation

Orc is a “programming language and system for orchestrating distributed
services ” [9]. Its focus is on the orchestration of what might be termed “ser-
vices” (web site calls, grid site calls, method calls, etc.) which provide core
functionality. The notion of service is captured by the site primitive and the
orchestration of site calls is described using three operators plus recursion. (See
[8] for a very readable introduction to Orc.)
Site A site call may return a single value or remain silent (not respond). A
site represents the simplest form of Orc expression.
Sequential composition In E1 > x > E2(x), expression E1 is evaluated
and may produce zero or more results. For each result generated, the result is
labelled x and a new instance of expression E2 is executed with parameter x. If
evaluation of E2 is independent of x the expression may be written E1 ≫ E2.
Parallel Composition In E1 E2 both E1 and E2 are evaluated in parallel.
The output is the interleaved outputs of the constituent expressions.
Asymmetric Parallel Composition In E1 where x :∈ E2 both E1 and E2

are evaluated in parallel. If E1 names x in some of its site calls, its evaluation
halts at the point of dependency. Evaluation of E2 proceeds until it delivers a
value for x at which point its evaluation is terminated. E2 may now continue
its evaluation with a binding for x.
Finally, the notation (|i : 1 ≤ i ≤ 3 : Wi) is used as an abbreviation for
(W1|W2|W3).

2.2 Example

Figure 1. Master/worker implementation of state
update (grey boxes represent sites, white ovals rep-
resent processes)

Consider a straightforward but
common distributed application:
data items in an input stream are
processed independently and the
results written to a shared state
(for simplicity assume that the
update function is associative and
commutative). In [3] we pre-
sented two alternative designs for
this application and it was shown
there how detailed analysis of the
Orc designs allowed comparison
of their expected performances.
Here we present the simpler de-
sign (see Fig. 1) as a vehicle to illustrate the use of O2J.

This design is based on the classical master/worker implementation where
centralized entities provide the items of the input stream and collate the resulting



16 GRID COMPUTING: ACHIEVEMENTS AND PROSPECTS

computations in a single state. The system comprises a taskpool (modelling the
input stream), TP, a state manager, SM and a set of workers, Wi. The workers
repeatedly take tasks from the taskpool, process them and send the results
to the state manager. The taskpool and state manager are represented by Orc
sites; the workers are represented by processes (expressions). This specification
corresponds to the diagram in Fig. 1 and can be formulated as follows:

system(TP, SM) , workers(TP, SM)
workers(TP, SM) , | i : 1 ≤ i ≤ N : Wi(TP, SM)
Wi(TP, SM) ,

TP.get >tk> compute(tk) >r> SM.update(r) ≫ Wi(TP, SM)

3. Generating a distributed Java framework from Orc
orchestration code

As discussed above, Orc fully supports distributed program orchestration
design and refinement. Its conciseness and operational style allows one to
construct compact implementation-oriented models of distributed system or-
chestrations unobscured by superfluous detail. The main focus here is to bridge
the gap between the abstract (and therefore powerful) modelling and the actual
(and therefore error prone and cumbersome) distributed programming practice
by providing automatic translation from Orc code to Java implementation.

We present and discuss here a run time support (the O2J Java library, Orc
to Java) allowing Orc “programmers” to write simple and concise Java pro-
grams that can be run on a collection of processing elements implementing the
distributed orchestration modelled by a given Orc expression/program. This
is the first step in a process that will eventually be completed by a compiler
taking as input Orc programs and generating in an automatic way the Java code
implementing that particular Orc program. At the moment we concentrate on
providing a suitable Java run time library allowing programmers to write Orc
code in a “Java friendly” syntax. Table 1 presents Orc constructs and their corre-
sponding library implementations. Thus, for example, the call OrcSeqVar(f,
x, g) provides a Java implementation of the Orc sequential composition (with
parameter passing) f >x> g(x).

3.1 Library usage example

Consider again the example outlined in 2.2. Using O2J, the Orc program
can be implemented by the Java code shown in Figure 2 (IW08Sample.java
editor window) provided that suitable classes implementing the TP and SM
sites as well as the WP process are provided by the user. Any site can be
provided by subclassing OrcSite class and implementing an OrcMessage
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body(OrcMessage call)method. This method handles a single call message
(the call) to produce a single answer to the call. For example, the TP site can
be provided by programming an OrcSite subclass implementing the body

method as follows:

public OrcMessage body(OrcMessage dummy) {

// upon any request, send the next integer in the list, up to MAXTASK

System.out.println("TaskPool "+getName()+" got request "+dummy);

if(task < MAXTASK) {

System.out.println("TaskPool "+getName()+" sending task "+task);

return(new OrcMessage(new Integer(task++)));

} else {

System.out.println("TaskPool "+getName()+" returning a null");

return null; // this implies blocking the answer ...

}

}

The Manager object declared at the beginning of the main is the manager
handling all the non-functional features related to execution of the Orc program.
In particular, the Manager starts the run time processes needed to support the
execution of the Orc program and manages the processing elements available
according to the allocation strategies required by the programmer.

3.2 Deriving Java code from Orc: the formal steps

Formally, in order to implement an Orc program using O2J, the programmer
must follow a precise procedure:

1 Write one class for each of the sites used in the program. Each class
subclasses OrcSite and provides (in addition to constructors needed to
store site specific parameters) the method handling a single call, i.e. an
OrcMessage body(OrcMessage call).

2 Write one class for each of the processes used in the program. As
for sites, each class subclasses OrcSite and provides (in addition to
constructors needed to store site specific parameters) an OrcMessage

body(OrcMessage call) method hosting the code implementing the
process body. The code may use send, receive and call methods
provided by OrcSite to implement process actions.

3 Write a Java main which involves:

(a) declaring a Manager (the Orc runtime) and possibly callingManager
methods to set up non-functional parameters for program execution;

(b) declaring the sites used by calling the constructors defined in the
classes extending OrcSite that represent the user defined sites;
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(c) implementing the program expression, using the appropriate li-
brary objects implementing the Orc parallel, asymmetric parallel
and sequential operators (OrcParmodelling the | operator, OrcSeq
modeling the > operator and OrcAsymm modeling the where x:∈
operator); and

(d) starting the execution of the program by issuing a startSite()

call on the main expression object.

It is worth pointing out that, at the moment, the Orc program modelled in
the main corresponds to the full inlining of the actual Orc program in that all
the expression calls are substituted by the corresponding expression bodies.
In particular, the code presented at the beginning of section 3.1 is actually
implemented as expressed in the Orc expression

E ,| i : 1 ≤ i ≤ N :
(TP.get >tk> compute(tk) >r> SM.update(r) ≫ E)

Also, tail recursion is to be programmed as infinite loops, and therefore the
actual code implemented in the Java main corresponds to

| i : 1 ≤ i ≤ N :
while(true){ TP.get >tk> compute(tk) >r> SM.update(r) }

This will change in the near future, as we are currently designing a Java
based compiler accepting as input Orc expressions and producing as output the
skeleton of the Java code of the main program.

The whole process achieves a clear separation of concerns between pro-
grammers and O2J library code (that is, between programmers and system
designers): programmers must concentrate on the Orc code and they must of
course also provide the functional code – for sites, the code handling a single
call; for processes, the process body code. The O2J code then handles all
the details one usually has to take into account when running distributed code,
that is process/thread decomposition, mapping and scheduling, communication
implementation, etc.

To support our claim, let us consider the code the programmer must supply to
implement the WP process in the example discussed above. This code consists
in class subclassing OrcSite and implementing1 the method:

public OrcMessage body(OrcMessage dummy) {

while(true) { // get a task (TP.get > tk )

OrcMessage taskMessage = call(taskPoolName,OrcMessage.nullMessage());

Object tk = taskMessage.getValue();

// then process it (tk > compute(tk) > r)

Object r = compute(tk);

// eventually send new contrib. to the SM (SM.update(r) >> )

1overwriting, actually: OrcSite by default implements a site that just echoes call messages
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Figure 2. O2J at work in Eclipse

call(stateManagerName,new OrcMessage(r));

} // then recur (recursive call => loop) (>> Wi(TP,SM) )

}

where the call message received at the beginning is just a dummy call initiating
the computation and the recursive structure of the worker is implemented by an
infinite loop. This is more or less what the programmer writes in the (inlined)
Orc code. In particular, no code is needed to take care of explicit communica-
tions synchronization, handling of the mechanisms used to implement the Orc
runtime (e.g. sockets, processes), etc., that is, those things that require extensive
distributed/parallel architecture knowledge in order to be used efficiently.

3.3 Implementation

The Orc runtime implemented by O2J is completely OO and quite straight-
forward. Sites and processes are implemented by objects distributed on the
available processing nodes by using features of ProActive [10] active objects.
In turn, site and process objects communicate with other sites and processes
using plain TCP/IP sockets and OrcMessages. We could have used any other
mechanism suitable for instantiating and running an object on a remote process-
ing element. In fact, we are considering using plain RMI (possibly wrapped
through ssh) instead of the ProActive migrateTomechanism that requires the
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Orc term O2J implementation

O2J RTS start mgr=new Manager()
f ≫ g OrcSeq(f,g)

f > x > g(x) OrcSeqVar(f,"x",g)
f | g OrcPar(f,g)

| i : 1 ≤ i ≤ k : Wi OrcParI("W",k,W)
f(x) where x :∈ g OrcAsymm(f,g,"x")

Orc mechanism O2J implementation

site call call(sitename,message)
channel send send(dest,message)

channel receive m = receive(source)
process start process.startSite()

process/site naming setName(name)
formal param access x=getParam("x")

Table 1. Orc expressions and corresponding O2J constructors (left), Orc mechanisms and
corresponding O2J implementations (right; procedure calls are calls to methods of the OrcSite
class).

full ProActive library to be installed on the employed nodes. For the same
reason (clean OO structure of the library and plain usage of TCP/IP sockets to
implement communication and synchronization), we have not considered using
more elaborate distributed programming environments such as the ones devel-
oped in Pisa (muskel [5] and ASSIST) or even more complex grid middleware.

A centralized name server, started by the Manager constructor, takes care
of all the port numbers and IP addresses needed to communicate with sites and
processes. When a site/process object is created, it publishes a ServerSocket
to accept calls/messages and communicates the IP address, port number and
site/process name to the centralized name server. The first time a call or a
send is performed at a given site/process, the runtime communicates with the
centralized name server to get the IP address and port number of the destination
site/process. These values are stored in a local cache and all future communi-
cations involving that site/process are handled by looking up the addresses in
the local cache.

When a new site or a new process is declared in the user defined main

it is allocated on one of the available machines according to an allocation
strategy established with the manager. To this end, users can call a Manager

setAllocationStrategy(OrcRTSAllocStrategy s) method to establish
an OrcManager.SPECULATIVEor an OrcManager.CONSERVATIVEallocation
strategy such as the ones discussed in [2]. In the former case, sites and processes
are always placed on new processing elements, if available. In the latter, sites
and processes are preferably placed on the processing element where the parent
site or process expression has already been placed. The list of available process-
ing elements is provided by an external XML file which is consulted when the
Manager is started. We are considering also the possibility of having a distinct
and autonomous “discovery thread” in the Manager that constantly keeps the
list up to date by querying the networked processing elements and discovering
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their capabilities to run O2J processes2. In both cases (in the conservative and
in the speculative strategy) the OrcSite invokes Manager methods (services)
to determine which processing element is to be used to run the site (process).

O2J also provides a very basic logging facility. Every site or process can
issue a log(String eventName) call to register an event in a trace that can be
consulted offline after (or during) program execution. The trace is maintained
by a centralized process and each event is registered in the trace with its name,
the local timestamp (i.e. the time value obtained on the machine where the event
was generated) and a global timestamp (i.e. the time value taken at the central-
ized server when the logging message was received). Despite the fact that local
timestamps may be generated on processing elements with non-synchronized
timers and the global timestamp counts also the communication overhead in-
curred in the logging process, the logging mechanism has proven effective at
measuring coarse grain computations. With such computations the overhead
involved in logging message transmission to the centralized log manager is
negligible w.r.t. the times we wish to measure and therefore global timestamps
may be used to determine the actual behaviour of distributed computations.

4. Experiments

The feasibility of the O2J approach was first tested with O2J 1.0, an imple-
mentation realized by Antonio Palladino, for his graduation thesis at the Dept.
of Computer Science in Pisa, under the supervision of the authors. Once the
feasibility was demonstrated we carried out a complete re-engineering of the
library to obtain O2J 2.0. This required substantially new code, although the
structure of sites, processes and manager did not change significantly. Here we
present results achieved with O2J 2.0.

With O2J 2.0, the programmer may directly translate to O2J objects any part
of a given Orc program. Table 1 summarizes the main correspondences between
Orc constructs and O2J code. A Manager object is used to handle those aspects
concerned with distributed implementation of the Orc code. After establishing
the Manager object and the sites of the Orc program, the programmer must set
up the O2J objects modelling the Orc expression to be evaluated in the program
(as depicted in Figure 2). Then the program computation is started by issuing
a startSite() method call on the main object representing the Orc program.

Using O2J 2.0, we implemented several Orc programs and successfully ran
these programs with the expected modest programming effort: the program-
mer was required to write only the functional code (the routines to represent
site calls and the bodies of the processes in the program) and all the rest was
handled by the library. The messages output by running the sample code dis-

2A similar mechanism is successfully used in muskel [5].
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Figure 3. Sample experimental results: scalability (left) and load balancing (right)

cussed in Section 3 are shown in the lower window in Figure 2 (the Console
window here shows only an initial portion of the messages printed by the sam-
ple code). It is worth pointing out that, in this case, both worker WP0 and
WP1 were placed on the same machine. As a result, the first time a worker
tried to call site SM, a lookup call was issued to the centralized manager
which replied with the IP/port of site SM (this is the Lookup request: SM

-> g4marcod.local/192.168.1.100:54882 line in the dump). After some
time, process WP1 attempted to send an update to SM but this time the address
was resolved using the local cache (line Process WP1 LOOKUP site SM).

Figure 3 shows examples of results achieved with O2J 2.0. All the experi-
ments have been run on a set of Linux workstations running kernel 2.4, Java 1.5
and interconnected via a Fast Ethernet network. The left half of the figure plots
completion time for a run of the O2J implementation of the code described
in Section 2 and whose process structure is shown in Figure 1. Using the pro-
gram, we computed 256 tasks using a number of worker processes ranging from
1 to 16. The figure shows that good scalability is achieved up to 16 workers,
despite the bottlenecks represented by the taskpool and by the state manager
sites. The right part of the figure, plots average load (taken with the Linux
command uptime) and number of tasks executed relative to a single process-
ing element hosting a worker process. As the code shown in Section 2 clearly
implements a self-scheduling policy (worker i calls the taskpool site to have a
new task to compute as soon it completes the previous one), we expect that a
sound implementation will achieve load balancing for either variable size tasks
or heterogeneous processing elements. The right half of Figure 3 corresponds
to a single run of the farm program of Section 2 with 8 workers. Nodes with a
higher average load executed fewer tasks, as expected. It is worth noting that
the variance in load (due to the concurrent run of a full compilation of mpich) is
very small, but the auto scheduling reacted appropriately by running more tasks
on the machines without the additional load (PEs 2, 5, 6 and 7, in this case).
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We ran the program several times, using different loads to make the processing
elements heterogeneous and each time we obtained results comparable to the
ones in Figure 3.

The completion times used to compile Figure 3 (left) have been taken without
considering the deployment time, i.e. from the moment the objects representing
Orc sites and processes have been deployed onto their “home” remote nodes
and initialized. As the code eventually run uses plain TCP/IP socket wrapped
into Object streams, we did not measure any significant overhead with respect
to hand written code modelling the same Orc program. In particular, the grain
needed to achieve good scalability on the 16 nodes in the experiment of Figure
3 is of the same order of magnitude as that needed to make a muskel task farm
scale (muskel uses only RMI and ssh to run applications).

Finally, we compared the amount of code needed to implement a simple
site with O2J, with the amount of code needed to implement it in the library,
representing a rough measure of the code needed to implement the same site
from scratch. The Worker process of the program of Section 2 represents about
65 lines of Java code. The library classes used to implement the Site (of which
Process is a sub-class) account for 10 times as many lines of code, without
taking into account the Manager and deployment code.

Overall, the experimental data obtained has demonstrated reasonable effi-
ciency in the O2J implementation of Orc programs, and the small amount
of code needed to implement sites, processes and the Orc expressions to be
evaluated illustrates the expressive power of using O2J.

5. Conclusions

We have discussed O2J, a Java library supporting distributed application
development based on the Orc formal orchestration language. O2J allows
Orc programmers to write Java code implementing Orc programs and to run
these programs on distributed architectures hosting Java and ProActive enabled
processing elements. Grid targeting comes as a consequence of the usage of
ProActive as the “distributed/grid middleware”. We presented a simple ex-
ample that notably requires considerable programming effort if implemented
directly using standard middleware mechanisms and we showed that the amount
of Java/O2J code needed is small and mostly a direct translation from the high
level specification of the problem in Orc. We also discussed some preliminary
experimental results demonstrating the feasibility of the approach. Currently,
to the best of our knowledge, there are no other “distributed” implementations
of Orc (the Orc system available at [9] is not a distributed implementation).
Our approach allows application programmers to reason about their distributed
application structure in terms of an abstract Orc model and then obtain support
from the O2J tools to produce the actual distributed implementation. Thus it
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brings grid application development under the umbrella of Model Driven En-
gineering techniques, and, as such, represents a significant step toward freeing
the developer from the burden of detailed middleware knowledge.
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Abstract
Checkpoints that store intermediate results of computation have a fundamental

impact on the computing throughput of Desktop Grid systems, like BOINC.
Currently, BOINC workers store their checkpoints locally. A major limitation
of this approach is that whenever a worker leaves unfinished computation, no
other worker can proceed from the last stable checkpoint. This forces tasks to be
restarted from scratch when the original machine is no longer available.

To overcome this limitation, we propose to share checkpoints between nodes.
To organize this mechanism, we arrange nodes to form complete graphs (cliques),
where nodes share all the checkpoints they compute. Cliques function as sur-
vivable units, where checkpoints and tasks are not lost as long as one of the
nodes of the clique remains alive. To simplify construction and maintenance of
the cliques, we take advantage of the central supervisor of BOINC. To evaluate
our solution, we combine simulation with some real data to answer the most
fundamental question: what do we need to pay for increased throughput?

Keywords: Desktop grid, checkpointing, clique
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1. Introduction
The enormous success of BOINC [1] , fueled by projects like SETI@home

or climateprediction.net, turned Desktop Grid (DG) communities into some of
the most powerful computing platforms on Earth. This trend mounts on the
motivation of volunteers eager to contribute with idle resources for causes of
their interest. With an average utilization of CPU as low as 5% [6] and with
new CPUs shipping with increasing number of cores, more and more resources
should be available for grid computing in the near future.

Although bearing enormous potential, volatility of workers poses a great
challenge to DG. To mitigate volatility, at certain points in the computation,
the worker computes a checkpoint and stores it locally. This enables the same
worker to resume computation from the last checkpoint, when it resumes com-
putation. Unfortunately a worker can be interrupted by a single key stroke and
can also depart from the project at any time. In this case computation of the
worker in the task is simply lost.

One obvious limitation of storing checkpoints locally is that they become un-
available whenever the node leaves the project. Martin et al. [11] reported that
climateprediction.net would greatly benefit form a mechanism to share check-
point files among worker nodes, thus allowing the recovery of tasks in different
machines. Storing the checkpoints in the central supervisor is clearly unfea-
sible, because this would considerably increase network traffic, storage space
and, consequently, management costs of the central supervisor. Another option
could be to use a peer-to-peer (P2P) distributed storage (refer to Section 4). We
exclude this option for a number of reasons. First, P2P storage systems would
typically require a global addressing scheme to locate checkpoints, thus impos-
ing an unnecessarily high burden for storing replicas of a checkpoint. Unlike
this, we can store all replicas of a checkpoint in nearby nodes, because we can
afford to lose checkpoints and recompute respective tasks from scratch. This
way, we trade computation time for simplicity. Moreover, in a P2P file system,
replicas of a checkpoint are stored in arbitrary peers. We follow the approach
of storing checkpoints in nodes that might use them. This is simpler, involves
fewer exchanges of checkpoints and can allow nodes to use checkpoints they
store to earn credits.

In this context, we present CliqueChkpt, which follows from our previous
approach in [5] , where we used dedicated storage nodes to keep checkpoints
of tasks. To make these checkpoints available to the community, workers self-
organized into a DHT where they stored pointers to the checkpoints. In Clique-
Chkpt, we try to improve this system. First, we address the requirement of
using dedicated storage nodes to hold the checkpoints. Second, we address the
requirement for storing pointers to the checkpoints in the DHT, which raised
the complexity of the system. To achieve this, we connect nodes in complete
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graphs (i.e., graphs where all the vertices are connected to each other, also
know as cliques). These cliques form small and independent unstructured P2P
networks, where workers share all their checkpoints. This enables Clique-
Chkpt to easily achieve a replication factor that ensures checkpoint survivability
despite frequent node departures. Unlike some P2P systems that are fully
distributed and thus require considerable effort to find clique peers [10] , we
simply use the central supervisor for this purpose. We show that CliqueChkpt
can achieve consistent throughput gains over the original BOINC scheme and
we assess the bandwidth and disk costs that we need to pay for this gain.

The rest of the paper is organized as follows: Section 2 overviews Clique-
Chkpt. In Section 3 we do some preliminary evaluation of CliqueChkpt. Sec-
tion 4 presents related work and Section 5 concludes the paper.

2. Overview of CliqueChkpt
In CliqueChkpt, upon request from a worker, the central supervisor assigns

it one or more tasks. The worker then computes the tasks, sending back the
results when it is done. We only consider sequential tasks, which can be in-
dividually broken into multiple temporal segments (St1 , . . . , Sti , . . . , Stn) and
whose intermediate computational states can be saved in a checkpoint when a
transition between temporal segments occurs. Whenever a task is interrupted,
its execution can be resumed from the last stable checkpoint, either by the same
node (if it recovers) or by some other worker. Our main goal is to increase
throughput of the entire computation. In all that follows we consider single-
replica computation. Extending this to scenarios where multiple replicas exist
is straightforward.

2.1 Chkpt2Chkpt
CliqueChkpt follows from our previous work in a system called Chkpt2-

Chkpt [5] . In Chkpt2Chkpt, we had the following components: the central
supervisor, the workers (including one particular type of worker, called the
Guardian) and Storage Points. The workers self-organized into a DHT that
served to store two kinds of information: indication of the current state of a task
(owner and number of the checkpoint being computed) and pointers to previous
checkpoints. This worked as follows (see Figure 1): i) worker requests task
from server and gets its data; ii) worker registers task in the Guardian (which
in fact is just a standard worker); iii) worker finishes a checkpoint and uploads
it to a storage point; iv) client stores the pointer to the checkpoint, updates the
Guardian (not shown) and v) sends results to the central supervisor.

The advantage of Chkpt2Chkpt over standard BOINC happens when there
is some worker that departs leaving some computation unfinished. In this
case, the cycle above changes slightly. Instead of restarting the task from the
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Figure 1. Overview of Chkpt2Chkpt Figure 2. Overview of CliqueChkpt

beginning, the worker can look for a recent checkpoint using the DHT. We
showed in [5] , that under certain scenarios our system could considerably
decrease the turnaround time of tasks, for checkpoint availabilities starting at
40%.

2.2 CliqueChkpt
In CliqueChkpt, we tackle the following shortcomings of our previous ap-

proach. Chkpt2Chkpt required the use of special dedicated nodes for storage
and it depended on pointers stored in volatile nodes. To overcome the first
problem, we store checkpoints in standard workers. Any node that stores a
checkpoint can use it to get extra credits in the task, when the original worker
fails. This gives nodes the motivation to increase storage space for checkpoins.
To handle volatile nodes, we increase redundancy. Redundancy was harder
to increase in Chkpt2Chkpt, because we used several pointers to handle tasks
and checkpoint information. To replicate we would need to also replicate these
pointers. This would raise complexity and, at the same time, it could fail to
work, because pointers themselves are also highly volatile.

We now use a simple ad hoc peer-to-peer network, where nodes form inde-
pendent and completely connected graphs — a clique (Figure 2). Each node
of the clique requests tasks from the central supervisor (step 1). After reaching
a checkpoint, the worker fully replicates the checkpoint inside its clique (step
2). Finally, the worker submits results to the central supervisor (step 3). If the
worker fails any other worker from the clique can use the checkpoint to finish
computation and submit the results (dashed step 3). We take advantage of the
central supervisor role to handle the workers that belong to each clique. Since
the central supervisor needs to know all the workers that exist in the system,
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we use it to set clique membership. Management of the group itself, like node
failure detection, reliable group communication, checkpoint download, upload
and so on, is up to the workers in the clique and does not involve the central
supervisor.

Workers have a system-wide variable, which tells the number of members
in each clique. Whenever they boot or if they find at some moment that their
clique is too small they request a new group from the central supervisor. To
reduce the load in the central point, in some cases, specially when operational
cliques still exist, workers should postpone this request until they really need
to communicate with the central supervisor (for instance, for delivering results
or requesting new tasks). The central supervisor keeps information of all the
cliques that exist in the system.

Whenever a node requests a new clique, the central supervisor looks for an
appropriate clique for the node and replies. This can involve three distinct
situations: i) the client should join a new clique, ii) or the client already has
a clique and this clique should be merged with some other, iii) or the clique
should remain unchanged. Only the two first cases are of interest to us. A
node can join a new clique or can request another clique to merge by sending a
messages to some node of the clique (which can redistribute the message inside
the clique afterward). One very important detail here is that some nodes can be
inactive very often. For instance, in some configurations, if users interact with
the system, BOINC middleware hands the CPU back to the user. We do a clear
distinction between the communication group of the clique and the clique itself:
the former is a subgroup of the latter (possibly the same). Workers should only
consider their peers as missing from the clique (and thus form new cliques)
after relatively large periods. For instance, simple heartbeats or disconnection
if nodes keep TCP connections alive can serve to identify departing nodes.

At least one of the nodes in a clique should have a public accessible IP
address1. This node must receive incoming connections from unreachable NAT
peers to keep open ports at routers. This will make these nodes responsible for
routing messages inside the clique. To pay for this effort, these nodes could be
allowed to belong to several different cliques to raise their chance of resuming
stalled computations and earn credits.

2.3 Definition of the Cliques
The central supervisor needs to have fast access to the size of the cliques.

It can store this in a simple array ordered by clique size, starting from 1 and
ending in the largest possible cliques (this array has necessarily a small number
of entries, because cliques cannot be big). In a first approach the elements

1This is not strictly necessary as we could use a node outside the clique to serve as communication broker.
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Figure 3. Internal structure of the central supervisor

of this array could point to a simple linked list with cliques of the same size.
When needed, the central supervisor would just pick the first clique in the list
and remove it from there (either to add an element or to merge with some other
clique). However, to conserve bandwidth and reduce latency a simple approach
would be to make cliques of nearby IP addresses, as these will often (but not
always) reflect topological proximity. In this way, we can organize the cliques
into ordered trees. To do this, we can compute the “average” IP address of a node
in the clique or picking the address of one of the nodes. By keeping these trees
balanced, searching a clique can have a time cost of O(log n), where n is the
number of nodes. Additionally, this requires, O(n) space, which is reasonable
if we consider that the server already uses this space to keep information of
nodes. Correlated failures of nodes of the same clique pose little problem to
CliqueChkpt, because tasks can be recomputed.

The former structure makes cliques accessible by their size and by their IP
addresses. We also need some data structure that makes cliques accessible by
their identification and also by their nodes. To access a particular clique in O(1)
time, both these structures could be hash tables. Deletion of old cliques occurs
when new ones are formed from merging operations. To remove other cliques
made of nodes that become inactive, the central supervisor must remove the
workers first, one at a time. We show the entire structure in Figure 3.

Workers inside a clique control the activity of each other, such that they can
tell whenever a clique peer is not computing its task anymore. In this case,
active nodes can request the central supervisor to acquire the task. However,
the central supervisor needs to have some mechanism to prevent faster nodes
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from stealing checkpoints from slower ones. A related problem is to prevent
nodes from getting undeserved credits that could be earned from checkpoints.
To prevent these situations, we force nodes to periodically claim ownership of
a task. If a worker fails to do so, it can be overrun by another worker. This
can be combined with a Trickle mechanism [3] to give the appropriate credits
to the right worker, when it reaches certain points in the computation. In this
way, nodes can claim their credits as they go, they do not allow other nodes to
steal their tasks, while at the same time, they can also claim ownership on a
stalled task. Like in the standard BOINC case, the central supervisor must use
replication to get some confidence that workers have done, in fact, real work.

3. Experimental Results
To evaluate the capabilities of our system, we built a simple event-based

simulator. This simulator includes workers and a central supervisor. All work-
ers are similar in CPU performance, all have public IP adresses and follow a
fail-stop approach. In practical terms this means that all the nodes abandon the
project at some random point in time. In Section 3.3, we evaluate such assump-
tion against known figures for node attrition of climateprediction.net. Workers
start in a sleeping state and wake up at random moments. Then, they request a
task and compute it, repeating these two steps as many times as they can before
thy leave. After another random period of time (with the same average length),
new nodes enter the network in a fresh state (no task and no checkpoints). All
the (pseudo) random times that govern the states of nodes follow an exponential
distribution. We used 35 nodes in the simulation, 200 different tasks and 20
checkpoints per task. Simulation time is set as the end of the 150th task (what-
ever task it is) to exclude waiting times in the end. Currently in the simulator,
we still do not take into consideration the time that it takes to create and transfer
the checkpoints.

3.1 Evaluation of Clique Size
We first try to determine the ideal clique size. It turns out that this value

depends heavily on nodes lifetimes. In Figures 4 and 5, we fixed node average
lifetime and varied the size of the clique. The former figure shows throughput
relative to the throughput achieved by (standard) nodes with private checkpoints.
Figure 5 refers to the costs: we measure storage space as the average number of
checkpoints that each active node stores on disk; and we measure bandwidth as
the average number of times that each checkpoint is exchanged in the network2.

2Computed as
Echeckpoints

Tcheckpoints
, where Echeckpoints is the total number of checkpoints exchanged in the

entire simulation and Tcheckpoints is the total number of checkpoints that exist in the simulation.
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Figure 5. Chkpt. exchanges and space in disk

We can see that throughput goes up with clique sizes until it reaches a plateau.
To conserve space we omit plots for different average lifetimes. If nodes live
longer, we have little gain in increasing clique sizes and we get an approximately
horizontal line in the throughput (with values below 1.5). If nodes live shorter,
there is a consistent gain in throughput with clique size. This suggests that
for a given node lifetime there is an ideal clique size. We have rapid gains in
throughput as we reach that size and no gains after that point.

Unlike throughput, bandwidth and disk space seem to grow linearly with
clique size. This makes it difficult to pick the right size for the clique, as, in
general, the designer may not know exactly the lifetime of nodes. Depending
on the available resources, a conservative approach points to small cliques, as
they promise improvements at controlled costs in bandwidth and disk space.

3.2 Comparison of Performance
In Figures 6, 7 and 8, we plot throughput, bandwidth consumption and oc-

cupied disk space, for varying worker average lifetimes. We consider cliques
with 3, 5 and 7 nodes as well as a setting where nodes can upload and down-
load all the checkpoints from storage points (as in Chkpt2Chkpt, except that in
Figures 6, 7 and 8 nodes always succeed to download the checkpoints). This
shows that an ideal storage point is unbeat by cliques, which, on the other hand,
can achieve much higher throughputs than nodes with only private checkpoints.
This gap widens as the failure rate of nodes goes up (this rate is computed as
task duration divided by the average lifetime of a node).

3.3 A Simple Estimation of Trade-offs
In this paper, we basically propose to get more throughput in exchange of

disk space and bandwidth. In this section we roughly quantify these trade-offs
using figures from climateprediction [3] . Machine attrition should be around
2/3, which means that around 2/3 of the machines drop computation before
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Figure 6. Rel. throughput for fail. rate
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Figure 7. Avg. exchanges of each checkpoint
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Figure 8. Average number of checkpoints on
disk per active node

finishing an entire task. This means that our fail-stop model only applies to 2/3
of the machines, while in 1/3 of the machines we might not gain much from
using cliques. Assume that due to their failures, these 2/3 of the machines
take n times more to compute a task in average. Assume also that failure-
free workers compute Tff tasks per time unit. This means that failure-prone
machines will compute 2Tff/n tasks per time unit, as they are twice as much,
but n times slower. We roughly evaluate throughput with all machines, Tall,
and the gain in throughput, G, as:

Tall = Tff +
2Tff

n
=

n + 2
n

Tff

G =
Tall

Tff
=

n+2
n Tff

Tff
=

n + 2
n

The gain G is very sensitive to n and tends to 1 (no gain) as n grows. In
Table 1, we show the gains in throughput and the costs of using cliques in the
computation of a task. We assume the following data (taken from our previous
experiments and from [3] ): 20 checkpoints of 20MB for task; 40-day computa-
tion (so we have a checkpoint on every two days on average); and failure-prone
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Table 1. Analysis of trade-offs

Parameter Storage Point Clique 3 Clique 5 Clique 7
Days saved 18.6 13.2 17.7 17.8
Avg. disk space per node (MB) 31.8 41 73.8 128.8
Avg. exchanges per node (MB) 515.8 1439.8 2250.6 3492.6

nodes fail 2.66 times during those 40 days (this number matches Figure 4).
It should be noticed that the frequency at which we publish checkpoints can
be made totally independent from the actual frequency at which nodes pro-
duce local checkpoints. climateprediction.net creates local checkpoints every
15 minutes, but we can distribute a checkpoint only once in every two days.
Table 1 shows that although the potential to save time in a task is considerable,
bandwidth required might be beyond what is available for most computers to-
day, if we think of a 20-30 day span to compute a task (after the improvements).
On the contrary, disk space requirements are not too high.

4. Related Work
The idea of using cliques in distributed systems is not new. However, to our

best knowledge, these have been used in different contexts and for different
purposes. For example in LARK [10] , nodes form ad hoc cliques with peers.
The purpose of LARK is to do multicast at the application level. To multicast a
message, nodes just send it to all the peers they know in different cliques. Most
complexity of LARK comes from the need to create and maintain the cliques in
a way that is, at the same time, efficient and tolerant to failures. Unlike LARK,
we can greatly benefit from the central supervisor to discard all this complexity
from the system. CliqueNet [9] also uses cliques, but for the sake of ensuring
communication anonymity.

CliqueChkpt directly follows our previous work in Chkpt2Chkpt, where we
used a DHT to store checkpoints and to manage some data related to the BOINC
tasks [5] . Here, we try to remove some of the constraints existing in Chkpt2-
Chkpt and shift all the storage back to the volunteer nodes. Interestingly, there
is one project called Clique [13] , which targeted a lightweight distributed file
system, where nodes self-organize into cliques. Clique also offered the possi-
bility of disconnected operation because it includes a reconciliation protocol.
Unlike this project, our cliques are logical and do not need to correspond to
some topological division. Besides Clique there are many other systems that
provide distributed storage. These often use DHTs to store either the files or
pointer to files. Consider the case of PAST [8] , Venti-DHash [14] , Shark [2]
or OceanStore [12] , just to name a very small set. Most of these systems
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reach far beyond what we really need for sharing checkpoints as they are fully
fledged file systems, while all we need is to store some checkpoints in a purely
best-effort basis.

With respect to storage requirements our system is closer to Condor [15]
and Condor-G [4] (Condor for multi-institutional Grids), which have powerful
mechanisms to generate checkpoints and migrate jobs. However, the specifici-
ties of these systems cannot be reproduced in DG systems. They push tasks
to available computers (inside LAN or accessible to Globus in Condor and
Condor-G, respectively) that share some sort of administrative ties. Unlike
this, volunteers of a DG system are very loosely coupled and the only central
entity is often over-utilized, under-financed and cannot be used to store check-
points. In a previous work, we also analyzed the effects of sharing checkpoints
in local area environments, resorting to a centralized checkpoint server [7] .

5. Conclusions and Future Work
In this paper we proposed a system called CliqueChkpt, where we orga-

nize workers of BOINC into complete graphs (cliques) to share checkpoints
of tasks. This involves the central supervisor to manage the groups, but does
not use neither this central component, nor any other dedicated machines to
store checkpoints. Additionally, nodes storing checkpoints can potentially use
them to earn CPU credits, which serves as motivation for volunteers to donate
resources. Our simulations suggest that CliqueChkpt can bring considerable
advantage over private checkpoints when tasks are very long, as in projects
like climateprediction.net. To demonstrate the feasibility of our scheme, we
used some figures from climateprediction.net to produce a rough estimate of
advantages, as well as some costs involved. This analysis showed that while
there is a huge potential for these schemes, bandwidth can be a major hurdle.

As we referred before, our work has some limitations that we intend to tackle
in the future, namely in the simulator, as we are not considering the times
needed to produce and exchange a checkpoint. Concerning the use of cliques,
we believe that there is considerable room for reducing the costs involved in
exchanging the checkpoints. In fact, we use a very straightforward scheme
that always downloads all the checkpoints missing from a node when there is
a change in the clique of that node. Just to name one possibility, we could
reduce the number of checkpoint replicas in each clique and use short timeouts
to detect worker failures.
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Abstract Service grids and desktop grids are both promoted by their supportive commu-
nities as great solutions for solving the available compute power problem and
helping to balance loads across network systems. Little work, however, has been
undertaken to blend these two technologies together. In this paper we introduce
a new EU project, that is building technological bridges to facilitate service and
desktop grid interoperability. We provide a taxonomy and background into ser-
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1. Introduction
There is a growing interest among scientific communities to use Grid com-

puting infrastructures to solve their grand-challenge problems and to further
enhance their applications with extended parameter sets and greater complex-
ity. Such enhancements were often limited or unattainable in compute systems
prior to the era of Grid computing due to increased resource requirements.
However, even existing grids are often smaller than many new scientific com-
munities and their complex applications would like to use.

E-infrastructures play a distinguished role in enabling large-scale innovative
scientific research. In order to establish such e-infrastructures, various grids
have been created and run as a service for the scientific community. Originally,
the aim of Grid systems was that anyone (donors) could offer resources for a
given Grid, and anyone (users) could claim resources dynamically, according
to their actual needs, in order to solve a computational or data intensive task.
This twofold aim has however not fully been achieved, and we can today ob-
serve two different trends in the development of Grid systems: Service Grids
and Desktop Grids.

Researchers and developers in Service Grids (SGs) first create a Grid ser-
vice that can be accessed by a large number of users. A resource can be-
come part of the Grid by installing a predefined software set, or middleware.
However, the middleware is usually so complex that it often requires exten-
sive expert effort to maintain. It is therefore natural, that individuals do not
often offer their resources in this manner, and SGs are generally restricted
to larger institutions, where professional system administrators take care of
the hardware/middleware/software environment and ensure high-availability
of the Grid. Examples of such infrastructures are EGEE, the NorduGrid, or
the NGS (National Grid Service) in the UK. Even though the original aim of
enabling anyone to join the Grid with one’s resources has not been fulfilled,
the largest Grid in the world (EGEE) contains around forty thousand proces-
sors. Anyone who obtains a valid certificate from a Certificate Authority (CA)
can access those Grid resources that trust that CA. This is often simplified by
Virtual Organization (VO) or community authorization services that centralize
the management of trust relationships and access rights.

Desktop Grids (DGs) on the other hand are commonly known as volunteer
computing systems or Public-Resource Computing, because they often rely
upon the general public to donate resources. i.e. “spare cycles” or storage
space. Unlike Service Grids, which are based on complex architectures, vol-
unteer computing has a simple architecture and has demonstrated the ability
to integrate dispersed, heterogeneous computing resources with ease, success-
fully scavenging cycles from tens of thousands of idle desktop computers. This
paradigm represents a complementary trend concerning the original aims of



EDGeS: Enabling Desktop Grids for e-Science 39

Grid computing. In Desktop Grid systems, anyone can bring resources into
the Grid, installation and maintenance of the software is intuitive, requiring
no special expertise, thus enabling a large number of donors to contribute into
the pool of shared resources. On the downside, only a very limited user com-
munity (i.e., target applications) can effectively use Desktop Grid resources
for computation. The most well-known DG example is the SETI@HOME [2]
project, in which approximately four million PCs have been involved.

DGs However, cannot work as services nor be used by anyone who has not
already setup their project to function in this environment. Additionally, unlike
most Service Grids, which have reciprocal agreements for resource utilization
among partners, participants in DG systems, cannot use the system for their
own goals. Because of this limitation, the Grid research community considers
DGs only as particular and limited solutions. Until now, these two kinds of
Grid systems have been completely separated and hence there has not been a
mechanism to be able exploit their individual advantageous features in a uni-
fied environment. However, with the objective to support new scientific com-
munities that need extremely large numbers of resources, the solution could
be to interconnect these two kinds of Grid systems into an integrated Service
Grid–Desktop Grid (SG–DG) infrastructure.

In this paper, we described research on how such an integrated SG–DG
infrastructure can be established, how applications can be adapted and devel-
oped for such an infrastructure, and how the execution of these applications
can be controlled and managed. The formulation of these questions and re-
search collaboration to answer them has already been started within the Core-
Grid Institute on Architectural Issues. More recently a new European project,
called EDGeS (Enabling Desktop Grids for e-Science) has been accepted by
the European Commission in order to build this architecture and provide it as
a service for the European research community. This paper gives an overview
on the research perspectives and proposed solutions within EDGeS. In the next
section, we provide a taxonomy of existing systems. We then describe the re-
lated work and core technologies we are working with in service and desktop
grids in Section 3. In Section 4, we provide an outline of the three main areas
of research within the EDGeS project, in providing a SG–DG bridge, appli-
cation development and user access, and the distributed data access concerns
between such systems. In Section 5, we present our concluding remarks.

2. Taxonomy of Existing Desktop and Service Grids
The main distinguishing feature between SGs and DGs is the way computa-

tions are initiated at the resources of the grid. In Service Grids a job submission
or a service invocation is used to initiate activity on a grid resource. Both can
be considered as a specific form of the push model where the service requester
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pushes jobs, tasks, service invocations on the passive resources. Once such a
request is pushed on the resource, it becomes active and executes the requested
activity. Desktop Grids work according to the pull model. Resources that have
got spare cycles pull tasks from the application repository which is typically
placed on the DG server. In this way resources play an active role in the DG
system, they initiate their own activity based on the task pulled from the server.

Both SGs and DGs can be public (global) and non-public (local). A public
(or global) grid refers to a grid that connects resources from different admin-
istrative domains, which are typically interconnected by wide-area network.
Non-public (or local) grids, on the other hand, connect resources within the
same administrative domain by using a local-area network or a VPN. Typi-
cal public service grids are EGEE, OSG [11], TeraGrid [13], etc. Non-public
service grids are typically interconnected local clusters (for example univer-
sity wide local Grids like the Oxford Campus Grid [12]). Both public and
local desktop grids can be further divided as volunteer and non-volunteer DGs.
Resources of volunteer DGs are collected from individual desktop owners as
their volunteer contribution to the Desktop Grid. Typical public, volunteer DGs
are the BOINC-based DG systems like SETI@HOME, Einstein@HOME [5],
SZTAKI Desktop Grid [4], etc. AlmereGrid [6] and XtremWeb [7] are also
volunteer, public DG systems.
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Figure 1. Taxonomy of grid systems from the Desktop Grid point of view.

In a non-volunteer DG individual desktop owners are instructed to con-
tribute their resources to the DG. Examples for such non-volunteer DGs are the
Extremadura School DG and the Westminster DG. The Extremadura School
DG is a public non-volunteer DG where the regional government instructed the
schools of the region to contribute their desktops to the DG system. The West-
minster DG is also a non-volunteer DG but this is a local DG working inside
the University of Westminster. Public volunteer DG systems can be realized as
centralized DG systems having one centralized server or as decentralized DG
systems where several DG servers are used and connected by a P2P network.
All the previously mentioned DG systems are centralized DGs. An example
for a P2P DG system is the OurGrid DG infrastructure from Brazil [3].
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In the next section, we introduce the most important technologies that form
the basis of the integrated SG–DG platform.

3. Core Technologies and Related Work
EGEE (Enabling Grids for E-sciencE) makes grids available to scientists

and engineers, the second phase of the European Commission funded project
(EGEE-II) has started in April 2006. The infrastructure is an ideal platform for
any scientific research area, especially for high energy physics and life sciences
whose computing demand is high. EGEE offers 40000 CPUs and about 5PB
of storage space, with a throughput of around 100000 jobs a day.

EGEE is built on the gLite middleware, a middleware for building a grid
that pulls together contributions from many other projects, including LCG and
VDT. gLite supports different services, namely resource brokers, computing
elements, storage elements, security services, information systems, worker
nodes and user interfaces. All the services are deployed on a Scientific Linux
installation. The basic building blocks of the gLite middleware are the Worker
Nodes (WN). These machines are responsible for the actual execution of ap-
plications in gLite. Users can assume that their application is run within a
well-defined environment when executing on a worker node. Worker nodes
are similar to the nodes of a cluster and a group of worker nodes is attached
to a Computing Element (CE). Computing elements provide a gateway to the
worker nodes and therefore essentially CEs provide the grid resources.

Condor [8] also allows EGEE resources to temporarily join a Condor pool
using the Condor Glidein [14] mechanism. This works by submitting Condor
itself to a grid resource and then this Condor instance can run jobs submitted
to the original Condor pool on the EGEE resource. However this has to be
configured manually and cannot be done automatically when the number of
jobs would justify it. Also, if there are currently not enough jobs in the Condor
pool to utilize the grid resource, then it may be wasted.

Another approach followed in [9] is to configure a DG Client (in this case
an XtremWeb client) as a backfill job for Condor. Whenever there are unused
resources available, Condor starts the backfill job (in this case a desktop grid
client) on the available computers. This approach has disadvantages: first, it
requires explicit support from the local job scheduler. Second, the adminis-
trator of the EGEE computing element must statically configure the desktop
grid client, meaning this solution is not available for regular EGEE users. So
this approach helps computing element administrators who want to increase
the utilization of their resources, but it does not help regular users who already
have desktop grid applications and want to use more resources for them.

A good example for Desktop Grids is BOINC [1] (Berkeley Open Infrastru-
cture for Network Computing). Desktop grids generally maintain a single cen-
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tral service and allow users to offer their computers’ CPU cycles for free. As
such, they are referred to as volunteer computing and generally the more ex-
citing the problem is, the more users will volunteer to offer resources.

BOINC builds on two main components: the desktop grid server and the
user’s machines. Users can join machines to a BOINC DG by installing a
client-side application, which measures the performance of the machine and
then communicates with the BOINC server, sending it performance specifica-
tions and a request for work. The server replies by sending application exe-
cutables and the requested work. The client processes the downloaded data
and upon completion uploads the results back to the server and then requests
more work. The BOINC server is the key part of a BOINC-based desktop
grid. It provides an entry point for the users, stores applications, their related
work units and user information, and deals with requests from BOINC clients.
BOINC servers use a web server (Apache) for the project users, which exposes
a simple web page offering basic functionalities: user registration, statistics,
query, BOINC client download, etc. The BOINC server also operate as user
forums related to the project where users can ask questions and report their
problems. BOINC uses a relational database (MySQL) for storage of applica-
tions, their related work units, client and user information, and so on.

4. SG and DG Bridging Technologies
EDGeS is attempting to close the gap between DG and SG computing. In

particular, we would like to run SG jobs in a DG and vice versa in a seamless
way. The bridge between a SG and a DG must work in either direction, but the
different directions have different issues and requirements and therefore they
need different solutions. A SG⇒DG bridge means that jobs submitted to a SG
system (for example the EGEE) should be executed using DG resources while
a DG⇒SG bridge allows resources from a SG to be used in a DG.

4.1 The SG–DG Bridge
Creating the connection between SGs and DGs will enable the interoper-

ability of EGEE and Volunteer Computing systems. Jobs originating from
EGEE should be allowed to run on Desktop Grids, and Desktop Grids should
be able to use EGEE Computing Elements as donors within a Desktop Grid
project. Right now, Desktop Grids running BOINC or XtremWeb can only use
traditional donors, and no other valuable computing power, like those EGEE
provides. On the other hand, as DG systems are very easy to set up and main-
tain, using them in EGEE adds notable computing power to already existing
VOs.
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Bridging from DGs to EGEE The DG to EGEE bridging can be achieved
in two ways. The first approach is creating a modified version of the Desktop
Grid client software that represents itself as a very powerful computer (with
hundreds or thousands of processors) toward the desktop grid server. The mod-
ified client does not run the work units received from the desktop grid server
itself but instead transfers the input data and executables to an EGEE VO and
executes the job on an EGEE resource, using the APIs provided by the EGEE
gLite middleware. This is most easily realized by launching a wrapper in place
of the real application that does the conversion and job submission and acts
as a proxy for the real application. The output of the job is also collected by
this wrapper and then sent back to the Desktop Grid server. Figure 2 depicts a
prototype version of this solution.

Figure 2. Structure of the DG⇒EGEE bridge.

This approach is very similar to the Cluster Client developed by SZTAKI to
utilize Condor clusters in a BOINC based DG which is described in [10]. The
advantage of this solution is that submission is done via the interface provided
by the SG middleware, meaning it is using a well defined interface and not
relying on the internal structure of the SG. Basically the SG is a black-box for
the client and the WNs do not need to have in-/outbound network connection
or any direct communication with the Bridge or the Desktop Grid server.

The difficulty in this approach is to harmonize the internal scheduler of the
desktop grid client with the EGEE gLite WMS. The internal scheduler of the
client decides how much work the desktop grid client asks from the server.
In order to make a good decision, the internal scheduler has to know how
loaded the EGEE resources are and must dynamically adapt itself to the level of
resources available. This will require implementing more advanced scheduling
strategies in the desktop grid client than currently available.

The second approach is to build an “overlay DG” on top of EGEE resources
by submitting agents wrapped as grid jobs. This solution was pioneered by
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Condor Glide-in and is also prototyped in XtremWeb. The agents are desktop
grid clients configured appropriately, so after landing at a WN and being started
by the SG middleware they connect to the Desktop Grid server to obtain work
and start processing it as a normal client. The agents are continue getting
work from the DG and processing it as long as their time, allocated by the SG
middleware, is up or there is no more work to get. The purpose of the Bridge
in this solution is not to convert DG work units to SG jobs but to keep the
overlay DG running by submitting and managing the agents. The advantage of
this approach is that it can be easily implemented using existing components
without modifying the internal scheduler of the DG client but the drawback
is that the SG middleware is not utilized as intended but rather circumvented.
This can be a problem e.g. for sites using internal network for WNs that do not
allow network communication.

The security aspects also have to be observed for both approaches. Jobs
arriving from the DG system do not have secure proxy certificates that the
EGEE middleware expects. Therefore, the Bridge must have its own certificate
and it must use this certificate when submitting the jobs to EGEE to identify
DG jobs. The lifetime of proxies used for job submission in case of long-
running applications is another important question. The bridge should be able
to use the proxy renewal mechanism present in EGEE.

On the resource provider side, we expect that not all resources want to run
jobs arriving from DGs. Therefore, solutions such as setting up new virtual
organizations (VO) will be investigated as a means of providing a way to dif-
ferentiate the jobs and allow the service providers control over what is run and
where. Jobs arriving from desktop grids will then be sent only to resources that
are part of this desktop grid VO.

Bridging from EGEE grids to Desktop Grids EGEE users require trans-
parent access to DG resources: they want to get information about the DG,
submit jobs to the DG, and get job status information and results back from
the DG using EGEE tools. Users should also be able to run jobs that make full
use of the EGEE infrastructure, for example accessing files located on EGEE
Storage Elements (SE). In order to achieve this, the DG must behave like an
EGEE Computing Element (CE) belonging to the VO the user wants to use.
Let us overview the most important aspects of achieving this goal.

In order to make the bridge capable of transferring jobs to the DG, the bridge
must provide a GRAM interface. Using this interface, the EGEE VO’s Re-
source Broker (RB) can talk to the DG.

Every job submitted from EGEE to DG will generate a single work unit.
This ensures the same behavior for the DG resource that is expected from an
EGEE CE. Direct mapping between the EGEE job and the Desktop Grid work
unit allows verifying that the submitted job has all parameters set for the exe-
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Figure 3. Structure of the EGEE⇒DG bridge.

cution. Input files need to be retrieved, if not stored locally. These files are then
mapped to the input files of the Desktop Grid application and a ready-to-submit
work unit is created.

Since the DG clients are outside EGEE they have no access to Storage El-
ements. Therefore, remote files required for work unit creation must be re-
trieved before execution. Work units are created on the DG server. Before
the executable is sent to clients, the bridge must ensure that all input files are
present on the DG server.

Security is a key challenge in this case as well. DGs are typically single user
systems and do not apply user certificates for authentication and authorization.
This means, that some kind of mapping from EGEE user certificates to DG
projects needs to be implemented.

4.2 SG–DG Data Access
One key component to EDGeS is the ability to satisfactorily handle the data

requirements that arise when transferring jobs between service and desktop
grids. The easiest solution to this problem would be to directly expose the
service grid data layer to the desktop grid environment. This would closely
mimic the functionality that is currently employed by most BOINC projects,
where data is centrally distributed to all Desktop Grid participants through a
set of known, trusted, and centralized servers. This simple solution, however,
has many potentially limiting drawbacks that make it an unattractive solution
for EDGeS, for example: Service Grids might not be able to cope with the
increased bandwidth requirements imposed by this solution; there are signif-
icant security implications in exposing these data systems to direct outside
semi-anonymous access; and, unlike traditional BOINC projects, which are
relatively static in their data inputs and code requirements, the jobs being mi-
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grated by EDGeS would be dynamic need-based transfers that would rely on
an underlying system that can dynamically build, expose, and propagate data
to network participants.

With these ideas in mind, the EDGeS project, through its JRA3 Data Ac-
cess activity, will be working to build Peer-to-Peer data sharing mechanisms
for data propagation. When considering applying P2P data access technolo-
gies to the scientific application domain, two broad challenge areas must be
addressed: social acceptability and technological challenges. Socially, Peer-
to-Peer technologies, especially when used for sharing data, are often viewed
with a skeptical eye, having been long associated with widespread file sharing
of copyrighted material. Additionally, there is also substantial concern that
mixing Peer-to-Peer with volunteer computing could, in the event of malicious
attacks on the network, cause irreparable damage to the volunteers’ trust in
the network and thereby adversely effect their willingness to continue donat-
ing resources. During the EDGeS project, these social concerns are ongoing
and take on a very important role during the current design process, in which
we are seeking to identify solutions that not only move forward Desktop Grid
utilization, but also to introduce Peer-to-Peer networks and P2P file sharing as
both valid and legitimate options for scientific computing.

Within the technical area, security and scalability are the main issues that
are being considered. Scalability for large P2P networks has evolved into two
general categories: Distributed Hash Tables (DHTs) and super-peer topolo-
gies. Both of these approaches are valid and have their unique advantages and
disadvantages depending on the problem one is trying to solve, generally with
a trade-off between speed, accuracy, and flexibility — finding the correct bal-
ance for each individual situation is the important factor. With this in mind,
scalability research in EDGeS is focusing on designing an adaptable network
that can automatically change its topology to optimally balance network load,
an especially useful trait in the case of super-peer technologies, where effective
algorithms can help promote an efficient and scalable design.

Security is a much larger issue. Due to the sensitive and vulnerable nature
of Desktop Grids, it is critical that not only are peer nodes secure from mali-
cious attacks, but also that data integrity and reliability is ensured. The easiest
solution, and perhaps the most susceptible to attacks is a pure P2P network,
in which any node is allowed to receive and share information with any other
node on the network. This allows for the most network flexibility and client
resource usability, however, since in this scenario any node has the capability
to promote information, it also has the ability to flood the network with false
information. Even though safeguards and hashing can be put in place to miti-
gate these effects, there is still the potential for malicious network utilization.
In a more restricted network, where only “trusted” peers are allowed to act
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as data cachers and rendezvous nodes the probability that this will happen is
diminished, however usability and flexibility are reduced as a result.

The EDGeS project is currently working to pursue a balance between a free
forming and a restricted network. Current security infrastructure is being based
upon the idea of secure super-peer data centers. In this type of system, every
network peer is allowed to receive data, however, only those that meet certain
security restricts are allowed to propagate the data to other network partici-
pants. Although these security constraints could be based upon any number
of configurable factors, in its initial iteration, we envision it to be something
as simple as a dynamic set of trusted peers that are identified through being
signed by a common X509 root certificate. In future iterations of the security
infrastructure, the feasibility of more interesting and fine-tuned scenarios will
be investigated, such as making use of a users’ “BOINC credit” standing to
certify them as a “trusted party” that can safely relay messages and store data.

EDGeS’s data access research is broken down into three distinct tasks that,
when completed, should provide a complete data access solution for the EGEE-
DG Bridge as well as a useful data access layer for generic Desktop Grids.
The tasks involved are as follows: (i) data migration from Service Grids to
Desktop Grids; (ii) data distribution in Desktop Grids; and, (iii) data access
inside Desktop Grids.

5. Conclusion
The EDGeS project started in January 2008 but collaboration between con-

sortium partners started earlier within the Scalability for Desktop Grids Re-
search Group of the CoreGrid Institute on Architectural Issues. The work pre-
sented here describes the main research themes for the project for enabling
bridging technologies between service and desktop Grids that were identified
during collaboration within CoreGrid. The main issues discussed in this pa-
per include security and bridging techniques for translating SG primitives into
their DG counterparts and vice versa, as well as proposed distributed data ac-
cess and scalability solutions. The bridging solutions discussed in this pa-
per were already prototyped to evaluate their advantages and disadvantages of
possible approaches in order to select the ones that will be elaborated by the
project. These prototypes and preliminary results of the evaluation were also
presented. The duration of the EDGeS project is two years and it will end in
December 2009. However, by not starting from scratch but basing our work on
results achieved earlier and existing collaboration induced by CoreGrid we are
confident that we can meet the ambitious goals in this short timeframe.
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Abstract Complex applications often require the execution of a large number of jobs
in a distributed environment. One highly successful and low cost mechanism
for acquiring the necessary compute power is the “public resource computing”
paradigm, which exploits the computational power of private computers. How-
ever, applications that are based on this paradigm currently rely upon centralized
job assignment mechanisms that can hinder the achievement of performance re-
quirements in terms of overall execution time, load balancing, fault-tolerance,
reliability of execution results, scalability and so on. This paper extends a super-
peer protocol, proposed earlier by this group, for the execution of jobs based upon
the volunteer requests of workers. The paper introduces a distributed algorithm
that aims to achieve a more efficient and fair distribution of jobs to workers. This
is obtained by the definition of different roles that can be assumed by super-peers
and ordinary nodes on the basis of their characteristics. A simulation study is car-
ried out to analyze the performance of the super-peer protocol and demonstrate
the advantage of distributing the job assignment process.

Keywords: data caching, Grid computing, job execution, job assignment, public resource
computing, super-peer.
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1. Introduction

The term “public resource computing” [1] is used for applications in which
jobs are executed by privately-owned and often donated computers that use their
idle CPU time to support a given (normally scientific) computing project. The
pioneer project in this realm is SETI@HOME [3], which has attracted millions
of participants wishing to contribute to the digital processing of radio tele-
scope data in the search for extra-terrestrial intelligence. A number of similar
projects are supported today by the BOINC (Berkeley Open Infrastructure for
Network Computing [2]) software infrastructure. The range of scientific objec-
tives amongst these projects is very different, ranging from Climate@HOME’s
[5], which focuses on long-term climate prediction, to Einstein@HOME’s [9],
aiming at the detection of certain types of gravitational waves.

This paper enhances a P2P-based distributed model, firstly proposed by this
group in [8], that supports applications requiring the distributed execution of
a large number of jobs with similar properties to current public-resource com-
puting systems like BOINC. In such systems, a “super-peer” node can act as a
centralized resource for a limited number of regular nodes, in a fashion similar
to a current Grid system. At the same time, super- peers can make interconnec-
tions with other super-peers to form a P2P overlay network at a higher level,
thereby enabling distributed computing on much larger scales.

Unlike BOINC, the model presented here does not rely on any centralized
mechanisms for job and data distribution, but exploits decentralizes techniques
which are enabled by the super-peer paradigm. The jobs to execute are assigned
to workers by means of “job adverts” which are produced by a job manager. A
job advert is an XML document that describes the properties of a job to execute.

In the enhanced version discussed here, a distributed approach is used not
only for job execution and data caching but also for job assignment. Job adverts
are disseminated to a number of “job assigners” that are available on the network,
and then assigned by these to worker nodes. Assignment is made in two phases:
(i) first the job manager searches the network to discover job assigners and
distribute job adverts among them, then (ii) workers, which are available for
job executions, issue query messages to find job assigners and retrieve job
adverts.

The super-peers play two fundamental roles: they route messages in a peer-
to-peer fashion and also act as rendezvous to match queries issued by job as-
signers and workers with compatible job adverts.

The objective of this work is to evaluate and point out the benefits that derive
from this decentralized approach for job assignment. This approach is profitably
combined with a decentralized data caching scheme, already described in [7],
through which workers retrieve input data, needed for the execution of jobs,
from “data centers”, i.e., from nodes specialized for the storage of such data.
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Simulation analysis performed with an event-driven simulator shows that the
simultaneous use of these decentralized mechanisms for job assignment and
data download can actually improve performance of public computing.

The remainder of the paper is organized as follows. Section 2 discusses
related work in the field and shows how the implemented architecture presented
here goes beyond currently supported models. Section 3 presents the super-
peer model and the related protocol. Performance is analyzed in Section 4, and
conclusions are discussed in Section 5.

2. Related Work

Volunteer computing systems have become extremely popular as a means to
garnish many resources for a low cost in terms of both hardware and manpower.
The most popular volunteer computing platform currently available, the BOINC
infrastructure [2] is composed of a scheduling server and a number of clients
installed on users’ machines. The client software periodically contacts the
scheduling server to report its hardware and availability, and then receives a
given set of instructions for downloading and executing a job. After a client
completes the given task, it then uploads resulting output files to the scheduling
server and requests more work. The BOINC middleware is especially well
suited for CPU-intensive applications but is somewhat inappropriate for data-
intensive tasks due to its centralized approaches for job assignment and data
distribution.

The job assignment/scheduling problem consists in the assignment of a set
of n jobs to a set of m machines such that some overall measure of efficiency is
maximized, e.g., the time required to complete all tasks. This is a NP-hard prob-
lem [4], which is generally solved with centralized or hierarchical approaches
[11]. Recently, distributed algorithms have been proposed for adaptation to
P2P and Grid environments, for example, in [12] and [13]. However, to the
best of our knowledge, distributed algorithms have never been applied to public
resource computing applications.

The P2P paradigm has proven to be effective also for distributed data caching.
Recently, BitTorrent [6] has become the most widely used and accepted pro-
tocol for P2P data distribution, relying on a centralized tracking mechanism to
monitor and coordinate file sharing.

However, P2P protocols might not be appropriate to scientific volunteer com-
puting platforms due to their “tit for tat” requirement that necessitates a ratio
between upload and download bandwidth, thus requiring peers to share data if
they are recipients of it on the network. Further, it is difficult to establish trust
for nodes that act as job assigners or data providers in the network; that is, it
is difficult to stop these nodes acting as rogue providers and serve false data
across the network or disrupt the network in some way.
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The approach proposed in [8] and [7] , and enhanced in this paper, attempts
to combine the strengths of both a volunteer distributed computing approach
like BOINC with decentralized, yet secure and customizable, P2P data sharing
practices. It differs from the centralized BOINC architecture, in that it seeks to
integrate P2P networking directly into the system, as job descriptions and input
data is provided to a P2P network instead of directly to the client.

3. A Super-Peer Protocol for Job Submission

A data-intensive Grid application can require the distributed execution of a
large number of jobs with the goal to analyze a set of data files. One represen-
tative application scenario defined for the GridOneD project [10] shows how
one might conduct a massively distributed search for gravitational waveforms
produced by orbiting neutron stars. In this scenario, a data file of about 7.2 MB
of data is produced every 15 minutes and it must be compared with a large num-
ber of templates (between 5,000 and 10,000) by performing fast correlation. It
is estimated that such computations take approximately 500 seconds. Data can
be analyzed in parallel by a number of Grid nodes to speed up computation and
keep the pace with data production. A single job consists of the comparison of
the input data file with a number of templates, and in general it must be executed
multiple times in order to assure a given statistical accuracy or minimize the
effect of malicious executions.

Currently, this kind of application is usually managed through a central-
ized framework, in which one server assigns jobs to workers, sends them input
data, and then collects results; however this approach clearly limits scalabil-
ity. Conversely, we propose a decentralized protocol that exploits the presence
of super-peer overlays, which are more and more widely adopted to deploy
interconnections among nodes of distributed systems and specifically of Grids.

In the super-peer overlay, the simple nodes, or workers, are responsible for
the execution of jobs, whereas the super-peers constitute the backbone of the
super-peer overlay. A worker or super-peer node can play different roles, as
detailed in the following:

job manager: a node that plays this role produces job adverts, i.e., files
that describe the characteristics of the jobs that must be executed, and
distributes these adverts to job assigners, which in turn assigns jobs di-
rectly to workers. The job manager is also responsible for the collection
of output results.

job assigner: it receives a number of job adverts from the job manager and
is responsible for the assignment of the corresponding jobs to workers.

data source: it receives data from an external sensor, and provides this
data as input for the execution of jobs. Each data file is associated to a
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data advert, i.e. a metadata document which describes the characteristics
of this file.

data cacher: it has the ability to cache data (and associated data adverts)
retrieved from a data source or another data cacher, and can directly
provide such data to workers.

In the following, data sources and data cachers are collectively referred to
as data centers, since both are able to provide data to workers, although at
different phases of the process: data sources from the beginning, data cachers
after retrieving data from data sources or other data cachers. When a worker
is available for a job execution, it first issues a job query to obtain a job advert
and then a data query to retrieve input data. A worker can disconnect at any
time; if this occurs during the downloading of a data file or the execution of a
job, that one will not be completed. Super-peers play the role of both routing

and rendezvous nodes, since they compare job and data description documents
(job and data adverts) with queries issued to discover these documents, thereby
acting as a meeting place for job or data providers and consumers.

3.1 Job Assignment and Data Download

The objective of the job assignment protocol is the distribution of jobs among
workers. To decentralize the assignment of jobs, the protocol exploits the
presence of multiple job assigners on the network. After producing a number
of job adverts, the job manager distributes them to the job assigners, which then
assign them to workers.

Figure 1 depicts the sequence of messages exchanged among the job manager,
the job assigners and the workers. A sample topology is shown, with 6 super-
peers, among which 2 assume also the role of job assigner.

After producing a number of job adverts, which describe the job to execute,
the job manager JM issues an “assigner query” to search for available job
assigners on the network. This query is replicated and forwarded by super-
peers (step 1). As job assigners, in this case the nodes JA1 and JA2, receive
an assigner query, they respond to the job manager by directly sending it an
“assigner advert” (step 2). The job manager collects assigner adverts for a
given interval of time, than it distributes the job adverts among the discovered
job assigners (step 3).

Subsequently, Figure 1 describes the behavior of the protocol when a job
query is issued by the workers WA and WB (step 4). A job query is expressed by
an XML document and typically contains hardware and software features of the
requesting node as well as CPU time and memory amount that the node offers.
A job query matches a job advert when it is compatible with the information
contained in the job advert, e.g., the parameters of the job and the characteristics
of the platforms on which it must be executed. A job query is forwarded through
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the super-peer network until it is delivered to a job assigner. If the job assigner
has not assigned all the matching job adverts received by the job manager,
one of these job adverts is sent to the worker (step 5) that will execute the
corresponding job.

Figure 1. Super-peer job assignment protocol: sample network topology and sequence of
exchanged messages to distribute job adverts among job assigners (messages 1, 2, 3) and assign
them to workers (messages 4, 5).

The job advert also contains information about the data file which is required
for the job execution and must be retrieved by the worker. Download of input
data is performed in the data-download phase, which is not described in Figure
1 and is better detailed in [7]. In a similar fashion to the job assignment phase,
the worker sends a data query message, which travels the super-peer network
searching for a matching input data file stored by a data center. Since the same
file can be maintained by different data centers, a data center that successfully
matches a data query does not send data directly to the worker, in order to avoid
multiple transmissions of the same file. Conversely, the data center sends only
a small data advert to the worker. In general, a worker can receive many data
adverts from different data centers. Then it chooses a data center, according to
policies that can rely on the distance of data centers, their available bandwidth
etc. After making the choice, the worker initiates the download operation
from the selected data center. When the super-peer connected to the worker
acts also as a data cacher, data is first retrieved from the data cacher and then
forwarded to the worker. This enables the dynamic caching functionality, which
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allows for the replication of data files on multiple data cachers and leads to well
known advantages such as increased degree of data availability and improved
fault tolerance. Dynamic caching also allows for a significant improvement of
performances, as shown in Section 4.

Upon receiving the input data, the worker executes the job, reports the results
to the job manager and possibly issues another job query, so restarting the
protocol. Each job must be executed a specified number of times, as mentioned
in Section 3. As a job manager receives the result of a job execution, it checks if
the required number of executions has been reached for that job. In this case, the
job manager informs the job assigners, that will no longer assign this specific
job to workers.

4. Performance Evaluation

A simulation analysis was performed by means of event-based simulation,
in order to evaluate the performance of the super-peer protocol described in
the previous section. The simulation scenario, and the related network and
protocol parameters, are set to assess the representative astronomy application
mentioned in Section 3.

The number of workers is set to 1000 and it is assumed that an average of
10 workers are connected to a super-peer. Each super-peer is connected to at
most 4 neighbor super-peers. Workers can disconnect and reconnect to the
network at any time: average connection and disconnection time intervals are
set, respectively, to 4 hours and 1 hour. A data download or job execution fails
upon the disconnection of the corresponding worker. The number of jobs Njob

varies from 50 to 500. In our application scenario, each job corresponds to the
analysis of a portion of the gravitational waveforms received from the detector.
The parameter Nexec is defined as the minimum number of executions that must
be performed for each job, either to enhance statistical accuracy or minimize
the effect of malicious executions. To achieve this objective, redundant job
assignment is exploited: each job advert can be matched and assigned to workers
up to a number of times equal to the parameter MTL, or Matches To Live, whose
value must be not lower than Nexec. A job is assigned to workers until either the
MTL parameter is decremented to 0 or the job manager receives the results for
at least Nexec executions of this job. A proper choice of MTL can compensate
for possible disconnections of workers and consequent job failures.

It is assumed that local connections (i.e., between a super-peer and a local
simple node) have a larger bandwidth and a shorter latency than remote con-
nections. Specifically, the bandwidth values of local and remote connections
are set to 10 Mbps and 1 Mbps, respectively, whereas transmission delays are
set to 10 ms and 100 ms. A TTL parameter is used to limit the traffic load: this
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corresponds to the maximum number of hops that can be performed by a job
query issued by a worker. In our test, this parameter is set to 3.

Simulations have been performed to analyze the overall execution time, i.e.
the time needed to execute all the jobs at leastNexec times. The overall execution
time, Texec, is crucial to determine the rate at which data files can be retrieved
from the detector and sent to the network, so as to guarantee that the workers
are able to keep the pace with data production. We also evaluated the balancing
of jobs among workers and the average utilization of data centers.

4.1 Performance of Distributed Job Assignment

The first set of simulations was performed to verify the advantage of having
multiple job assigners in a network. The number of data sources is set to 2,
whereas the overall number of data centers is 50, which is half the number
of super-peers. The values of Texec and MTL are set, respectively, to 10 and
20. This value of MTL is sufficient to compensate for possible disconnections
of workers, while larger values would be ineffective. This kind of analysis is
discussed in [7].

Figure 2 shows the overall execution time and the network load vs. the num-
ber of job assigners, with different values of Njob. In Figure 2(a), a significant
reduction of Texec is perceived as the number of job assigners increases. This
can be explained as follows. If only one or few job assigners are available, most
jobs will be assigned to the workers which are close to job assigners, because
their job queries will succeed with a higher probability and in a shorter time.
Therefore a small percentage of workers will issue a high percentage of data
queries, which will be likely served by the data centers close to such workers.
Two main drawbacks derive from this scenario: (i) many jobs will be served
by a few workers and (ii) many download operations will be served by a small
set of data centers. A larger overall execution time is the obvious consequence.
A wider availability of job assigners can limit both the mentioned drawbacks.
Furthermore, the reduction of Texec is more evident when the computational
load, i.e., the number of jobs, is higher. It is noted, however, that as the number
of job assigners increases, the execution time first decreases then tends to get
stable: therefore the optimum number of job assigners can be set depending
on the minimum incremental improvement (i.e., the improvement obtained by
adding one more data center) that is considered acceptable.

Figure 2(b) reports the overall number of query messages that are forwarded
on the network to complete the required number of job executions. As the
number of job assigners increases, fewer hops are necessary to discover a job
assigner, therefore the traffic load correspondingly decreases.

Further simulation results prove that the maximum number of jobs assigned to
a single worker remarkably decreases as the number of job assigners increases.
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Figure 2. Performance results vs. the number of job managers, for different numbers of jobs:
(a) overall execution time; (b) network load.

A reduction in this index corresponds to a better load balancing among workers,
which is another obvious objective of public scientific applications. The trend
of this index, not reported here, is qualitatively very similar to that of execution
time.

4.2 Performance of Distributed Data Caching

A second set of experiments was performed to evaluate the effectiveness
of the distributed caching approach, enabled by the availability of multiple
data centers, when combined with distributed job assignment. The examined
network is analogous to that examined in Section 4.1, except that the number
of jobs to execute is fixed to 500 and the number of available data centers is
varied from 2 (which is the number of data sources) to 50, i.e., half the number
of super-peers. Moreover, results are reported for a number of job assigners
ranging from 1 to 5, since this is the interval for which a significant impact on
performance indices can be perceived, as shown in Section 4.1.

Figure 3 shows the values of the overall execution time calculated for this
scenario. The time decreases as more data centers are made available in the
network, for two main reasons: (i) data centers are less heavily loaded and there-
fore data download time decreases, (ii) workers can exploit a higher parallelism
both in the downloading phase and during the execution of jobs.

Figure 3 does not report results for some combinations of the number of data
centers and the number of job assigners, because the disconnections of workers
do not allow for the completion of all the required job executions. Specifically,
if the number of job assigner is 2 or larger, the number of data centers should be
at least 15, while, if only one job assigner is available, at least 10 data centers are
needed. In fact, if only a few data centers are available, each of these is likely
to be overloaded by a large number of workers’ requests; as a consequence, the



58 GRID COMPUTING: ACHIEVEMENTS AND PROSPECTS

0

5000

10000

15000

20000

25000

30000

35000

5 10 15 20 25 30 35 40 45 50

T
E

x
e
c
 (

s
)

Number of data centers

Nassigners = 1
Nassigners = 2
Nassigners = 3
Nassigners = 5

Figure 3. Overall execution time vs. the number of data centers, for different numbers of job
assigners.

download time increases and the disconnection of a worker during the download
phase becomes a more probable event.

Figure 4 shows the average utilization of data centers for the same scenario.
This is defined as the fraction of time that a data center is actually utilized, i.e.,
the fraction of time in which at least one download connection, from a worker or
a data cacher, is active with this data center. The value of this index is averaged
on all the data centers and is an important efficiency index that helps to evaluate
the convenience of adding more data centers to the network.
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Figure 4. Average utilization of data centers vs. their number, for different numbers of job
assigners.

The average utilization decreases as the number of data centers increases
but, in contrast with the execution time, curves do not get to a relatively stable
value. This is a useful indication for setting a proper number of data centers.
To illustrate this, consider the results obtained with 3 job assigners. While
the overall execution time can be decreased until the number of data centers is
increased to about 40, the average utilization continues to decrease as more data
centers are made available. As an example, if the number of data centers were
increased from 40 to 50, there would be a worse exploitation of data centers but
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no significative reduction in the execution time, from which it can be concluded
that an appropriate number of data centers is indeed 40.

5. Conclusions

In this paper we have reported on the analysis and performance evaluation of
a super-peer protocol for the execution of scientific applications according to
the “public resource computing” paradigm. Use of super-peer overlays allowed
us to define distributed protocols both for the assignment of jobs and for the
retrieval of input data. Specifically, these two phases exploit the availability of
super-peer nodes that, in addition to play the role of routing and rendezvous
nodes, are also configured to act as job assigners and data centers, respectively.

Simulation results showed that the combined application of distributed job
assignment and distributed data download leads to considerable performance
improvements, in terms of the amount of time required to execute the jobs, the
network load, the balancing of load among workers and the utilization of data
centers.
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1. Introduction

In this work, we address the problem of locally estimating the size of a Peer-
to-Peer (P2P) network using local information. Our approach is based on a
breadth-first search (BFS) rooted in the node that wants to discover the size of
the system. It is easy to design an algorithm that eventually counts all the nodes
in the system, by recursively acquiring the neighbors of the discovered nodes.
We however seek to limit the depth to which the BFS explores the network to
avoid generating more traffic in the network, computing an estimate instead of
the exact network size.

The rest of this article is organized as follows: in Section 2 we present the
algorithm for P2P network-size estimation. In Section 3 we evaluate of our
algorithm in terms of the estimation error (in percentages of the real network
size). Finally, conclusions and future work are presented in Section 4.

1.1 Motivation

The potential applications of accurate estimates of network size are various.
One broad class of applications are the numerous algorithms that either require
knowledge of the network size or greatly benefit from such information, which
is the case in some routing tasks. Essentially, in many distributed protocols the
knowledge of the network size is implicitly assumed.

For example, when estimating the information spread or the gossiping cov-
erage [1], knowing the network size helps. These algorithms have direct ap-
plications in the field of P2P recommendation schemes. Knowing the network
size is also useful in estimating the latency of gossip based broadcast, espe-
cially in setting up a time-to-live (TTL) mechanism for gossips.

Secondly, many parameters that control the provisioning of resources in
commercial P2P applications (such as data or video on demand) should be
based on the network size [2]. To give a concrete example, the performance of
BitTorrent can be improved by selecting the choking/unchoking count and rate
dynamically, which eliminates a a potential source of poor performance [3].

We observe that none of the above examples is overly sensitive to the pre-
cision of the evaluation of network size: for instance, the time needed to visit
all nodes (or cover time) in a randomly configured network of n nodes using a
random walk has complexity O(n log(n)). Therefore, an error in the estimate
of n reflects almost linearly in the estimate of the cover time. Such consider-
ation justifies the interest for a distributed algorithm that returns a sufficiently
precise estimate of the size of the system, but without incurring in the the cost
of an exhaustive computation.

Starting from this concept, Horowitz and Malkhi [4] propose a scheme for
dynamically estimating network size at each node of the network as the net-
work evolves (that is, while nodes join and leave the network), by maintaining
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an estimate of the logarithm of network size. Their algorithm exhibits three
limits, that may be critical in a Grid environment:

(i) the presence of a directory of the nodes is not excluded,

(ii) the system is extremely unstable, since the precision of a new estimate
depends on the precision of the previous one, and

(iii) an error on in the estimate of a logarithm reflects exponentially on the
network size.

In this paper we propose a new method that, with similar purposes, does not

require the presence of a centralized directory, is memoryless, and substan-
tially improves the precision of the estimate. As a counterpart, our methodol-
ogy is more expensive, since we require a bounded flooding of the network.
However, the nodes involved in the flooding will finally obtain an estimate of
network size. As an additional feature, the size of the system is obtained on de-
mand, whenever a node happens to need that information, without maintaining
activity at all nodes as all times, as in Horowitz and Malkhi scheme.

In essence our methodology consists of launching a Breadth First flooding,
which stops whenever a certain criteria, based on a mathematical modeling of
the number of hosts reached by the flood, is satisfied. The criteria guarantees
that a significant approximation of the network size is obtained well before the
flooding reaches each node, and in this sense we speak of an early stopping

flooding.

1.2 Data Validity

For modeling Peer-to-Peer networks, we used the Delft BitTorrent DataSet
21, which is the outcome of a large-scale measurement of the BitTorrent net-
work during one week in May 2005 [5]. The data set tracks over 450,000
BitTorrent users coming from PiratesBay, the largest BitTorrent community at
the time of the measurements.

The measurement tracked peers participating in any swarm of size 40 or
above. By tracking peers interested in a broad range of file types and sizes, the
measurement captured the characteristics of a world-wide community of users.

There are over 35 million BitTorrent peer events recorded in the data set,
making it the largest publicly available P2P data set. The measurement also
included the Internet routes used by peers to exchange information. This infor-
mation was gathered through multi-sourced traceroutes and spanned about 20
million IP addresses.

1The Delft BitTorrent DataSet 2 is available online at http://multiprobe.ewi.tudelft.nl/

Estimating the size of   Peer-to-Peer networks usingLambert’s W function.
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2. Peer-to-Peer network size

Three seminal papers, i.e., Watts and Strogatz [6] on the small-world net-
works, Faloutsos et al. [7] on the structure of the Internet, and Barabasi and
Albert [8] on scale-free networks, gave rise to research on the models and
the properties of nonuniform networks (cf. for example [9]). Nonuniform net-
works are graph models of real-world systems where the edges are not placed
uniformly at random among the vertices. In such systems, the structure of the
network is typically nontrivial and the network behavior is complex. Most of
the P2P systems used in practice, and all the major P2P file-sharing systems,
are forms of nonuniform networks.

There have been numerous studies on the size and shape of the P2P file-
sharing systems. Using BFS (crawling), Saroiu et al. [10], Ripeanu et al. [11],
and more recently Stutzbach and Rejaie [12] measure the properties of Napster
and Gnutella. Also using BFS, Pouwelse et al. [13] and Iosup et al. [5] mea-
sure the properties of BitTorrent. However, the use of BFS as in these works
may bias the results, especially for P2P systems of hundreds of thousands to
millions of peers. The BFS throughput is at most (usually) 20 kpeers/minute
per crawler (machine), which means that for a network of 100,000 peers the
crawling time would be 5 (100) minutes in the optimal (average) case. How-
ever, the faster version [12] does not cover firewalled and overloaded peers. In
P2P systems, the number of firewalled peers varies between 25-60% [5, 12,
13, 14], with higher values for the most popular networks, e.g., BitTorrent [5].
If many peers in a P2P system use BFS to find the size and the properties of
the network, contacted peers become overloaded. For the slower version of the
BFS, we note tha many peers stay in the network in the order of (tens of) min-
utes [15], and that even more peers quit soon after obtaining content from the
network [10, 13], which may render long BFS measurements inaccurate. We
conclude that using an unmodified. full-scale BFS for measuring the network
size does not scale with the size of today’s P2P networks.

Alternatively to using BFS, Sen and Wang [15] measure using router flow
information the properties of Gnutella, FastTrack (KaZaA), and DirectCon-
nect. However, this method requires access to routers across the ISP’s network
over the world, which is not possible for a wide majority of the peers inside
the P2P network.

We propose in this work an alternative to the full-scale BFS, which com-
bines a limited BFS with mathematical analysis to achieve a good network
size estimation (i.e., above 90% accuracy). The mathematical analysis is based
on the observation that plotting the the number of new nodes discovered upon
visiting each vertex during a BFS, depicts a fuzzy, hard-to-model function, but
when instead the contributions of the neighbors are summed.
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Let us model the network as a graph G = (V,E), with |V | = n being the
total number of nodes. We denote the set of neighbors of a node v ∈ V by

Γ(v) = Γ1(v) = {w | (u,w) ∈ E} , (1)

we define the second-neighborhood of v as

Γ2(v) =
⋃

w∈Γ(v)

Γ(w) (2)

and recursively from thereon the k-distance neighborhood of v as

Γk(v) =
⋃

w ∈ Γk−1(v)Γ(w). (3)

One can compute iteratively for a starting node v ∈ V the following value for
i = 1, 2, 3, . . . until the value drops to zero:

Λi(v) = Γk(v) \

k−1
⋃

j=1

Γj(v), (4)

that is, the number of new nodes reached at step i of the BFS.
The function,

Si(v) =

i
∑

j=1

|Λi(v)| (5)

obtained summing the contributions has a quite smooth plot, as you can see in
Figure 2.

In the rest of this paper, we first define the functions used and then present
the results obtained by studying the function Λi(v) varying the starting node
v. Eventually Si(v) levels off as Λi(v) falls to zero, meaning that the entire
network has been traversed and new nodes can no longer be found.

In BFS, nodes “pass on messages” to their neighbors, who then pass mes-
sages on to their neighbors – the messages being in a sense recursive procedure
calls. This process resembles that of how a rumor spreads in a population, al-
though in BFS the nodes pass the information or the request onto all of their
neighbors, whereas rumors tend to spread less efficiently. Supposing that each
node was to pass the message to just one random neighbor, the process of
spreading would effectively be a random walk. Pittel [16] studies the coverage
that a rumor achieves given the number of “rounds” of gossip-passing. An-
other good analogy comes from epidemic spreading, where it is of interest to
estimate the number of infected individuals at a given time [17]. Analogies to
epidemic spreading have been applied in data-base system design [18].
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We use the Lambert’s W function [19], which is the inverse function of
f(w) = wew and cannot be directly expressed in terms of elementary func-
tions, to estimate the network size based on the form of plots of accumulated
sums of |Λi(v)| for different nodes v.

The details on how this is done are presented in Section 2, where we justify
the application of the W function in estimating the network size based on the
shape of the plot of the accumulated sums for fixed v, which has the shape of
f(i) = a log(i)+b. Our choice of the W function bases on the work of Corless
et al. [20], where a recurrence relation is used to calculate W, providing fast
convergence to the desired result in less than 100 iterations.

In a P2P network, technically every node could explicitly calculate the net-
work size by running a BFS (see pseudo-code in Figure 1).

procedure BFS(node s, graph G)

queue q;

// put the starting node s into the queue

put(q, s);

N = 1; // initial known network size

// while the queue is not empty

while (!empty(q)) {

// retrieve the first element of the queue

v = get(q);

// mark the node v to have been visited

mark_visited(v);

// retrieve the list of neighboring nodes to v

list = neighbours(v);

// remove from the list all previously visited nodes

list = remove_visited(list);

// add to the known network size the newly encountered nodes

n = n + size(list);

// add the elements of list to the end of the queue

put(q, list);

}

Figure 1. The BFS algorithm that would need to be executed to determine the size of the
network n given the network as a graph G and a starting node s.

In large networks, this is a long and communication-intensive procedure, as
each edge of the network must be traversed. The size of list at each iteration
is the number of new nodes discovered, |Λi(v)|. We found that the shape of
the curve of Si(v) (Equation 5) can be approximated by

Si(v) ≈ y = a ln(i) + b (6)
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as is shown in Figure 2. We found an even better fit with a function with an
additional term with ln(ln(i)), but we could only work with such a function
using numerical methods. Nevertheless, the simpler form of Equation 6 serves
our purposes and gives a reasonable fit, we saw no need to complicate the fitted
function further.

The value of Si(v) as it levels off is exactly n, as the maximum value of
Si(v) is the size of the whole network. Hence, the points that interest us are
those with Si(v) = n, which is necessarily the case for Sn(v) = n, although
the leveling off can occur much earlier, depending on the network structure2.

The point Sn(v) = n corresponds in the fitted function (Equation 6) to the
solution of this equation:

n = a ln(n) + b. (7)

Equation (8) in itself is solved by

n = −a · W

(

−
e−b/a

a

)

, (8)

2When i reaches diam(G), the diameter of G, which is the maximum distance in terms of number of edges
on the shortest paths between any two nodes, necessarily the BFS has reached the entire network regardless
of the starting vertex v. Typically diam(G) ≪ n, although in the worst case diam(G) = n − 1.
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where W (z) is the Lambert’s function [19] (also known as the Omega func-

tion). Lambert’s W function can be calculated by the following recurrence
relation [20],

wj+1 = wj −
wje

wj − z

ewj (wj + 1) −
(wj + 2)(wje

wj − z)

2wj + 2

, (9)

included in mathematical software packages such as Matlab and Maple.
Our equation a ln(n) + b − n = 0 (Equation 7) has two roots (see Figure

3), and the network size is given by the second root. To obtain this second
root using Lambert’s W function, is its non-principal value which has to be
calculated. In our case, as z ∈ [−1/e,−0.1], an initial value of w0 = −2
should be used in the recurrence (Equation 9).

Seeking to simplify the situation, we studied the correlations of the coef-
ficients a and b of Equation 6 in the fits to the real-world data obtained by
computing the values of Si(v) from different nodes of the data set up to i = n.
As a positive surprise, we found a strong, stable correlation:

b = c1a + c2, (10)

where c1 and c2 are constants that do not appear to depend strongly on the
starting node v and could be obtained numerically from a small data set of the
P2P network. From our data set, we estimated the values of c1 = −2.0552 and
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c2 = −7840 that turned out to be well-behaving. We can therefore replace the
constant a by the following substitution (from Equation 6):

a =
y − c2

ln(n) + c1

. (11)

The precision of our estimate of n will depend on the correctness of the
estimation of a. Once the estimation algorithm reaches a stable value for a, the
estimate of n can be computed. The estimation of a is done by starting a BFS
at a node v, setting a0 at an initial guess (we used 5, 000), computing at each
iteration i the value

a′ =
Si(v) − c2

ln(i) + c1

, (12)

based on which ai is computed as

ai =
1

i

(

(i − 1)ai−1 + a′
)

. (13)

The BFS is cut off when ai ≈ ai−1, that is, when the estimate of a no longer
significantly changes. In the next section, we study at which number of itera-
tions i the estimate of a, and hence the estimate of n, typically stabilizes.

Should this iteration count be significantly smaller than the diameter of the
P2P network (around 14 in our data set), the estimation method would provide
an estimate on the network size with less communication overhead than the
straightforward method. Another option would be to simply give a TTL for
the BFS to explicitly cut it off after a fixed number of iterations.

3. Evaluation of the estimation method

We evaluate our algorithm by computing the estimation error, defined as

ǫ =
100 |real size − estimated size|

real size
% (14)

by each new neighbor visited and by the depth-level i of the BFS. Figure 4
shows that, for small networks (with less than 80, 000 nodes), running 5, 000
iterations (10% of whole network) is sufficient to reach an estimation error of
10 percent, and around 26, 000 iterations suffice for larger networks (with over
100, 000 nodes) to achieve same estimation error.

Using a fixed TTL to control the depth to which to perform the BFS, our
experiments show that for all networks, finishing the third level of BFS, the
estimation error is at most 10 percent of the real network size (see Figure 5).
This is a promising result for quickly estimating the size of a P2P network.
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4. Conclusions and Future Work

We presented a novel approach for estimating the size of a peer-to-peer
(P2P) network, fitting the sum of new neighbors discovered at each iteration of
a breadth-first search (BFS) with a logarithmic function, and then using Lam-
bert’s W function to solve a root of a ln(n)+b−n = 0, where n is the network
size. With rather little computation, we reached an estimation error of at most
10 percent, only allowing the BFS to iterate to the third level.

As future work, we plan to study the effect of fitting instead a function
d ln(ln(x)) that have a better fit to the real data. This function is more difficult
to manage analytically, but could enable us to fine-tune of the parameters of
the proposed method. Additionally, possible effects of network structure, such
as the presence of clustering, on the values of c1 and c2 (of Equation 10) are of
interest. We also plan to implement our estimation algorithm in real systems,
where it can be of direct practical use.
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1. Introduction
With the emergence of distributed heterogeneous systems, such as grids, and

the demand to run complex applications such as workflows, the problem of
choosing robust schedules becomes more and more important. Indeed, in such
environments, a carefully crafted schedule based on deterministic, statically-
known, estimates for the execution time of the different tasks that compose a
given application, may prove to be grossly inefficient, as a result of various
unpredictable situations that may occur at run-time. Still, the existence of a
good schedule is an important factor affecting the overall performance of an
application. Thus, to mitigate the impact of uncertainties, it is necessary to
choose a schedule that guarantees robustness, that is, a schedule that is affected
as little as possible by various run-time changes.

There are several ways to achieve robustness. A first approach is to overesti-
mate the execution time of individual tasks. This results in a waste of resources
as it induces a lot of idle time during the execution, if the task duration is much
shorter than the estimation. Another solution is to reschedule tasks dynamically
allocating them to an idle processor in order to take into account information
that has been made available during the execution. However, rescheduling a
task is costly as it implies some extra communication and synchronization costs.
Relevant studies [19] indicate that, in addition to rescheduling, it is important
to have a static schedule with good properties before the start of the execution.
Therefore, even if a dynamic strategy is used, a good initial placement would
reduce the possibility of making a (later to be proved) bad decision and, hence,
would reduce the extra costs of resorting to a dynamic strategy.

A significant amount of work in the literature has focused on proposing static
directed acyclic graph (DAG) scheduling heuristics that minimize the overall
application execution time (known as the makespan). However, to the best
of our knowledge, so far, no study has tried to evaluate these heuristics with
respect to the robustness of the schedule they produce. In this paper, we assess
the robustness of twenty DAG scheduling heuristics from the literature designed
to minimize the makespan.

In the remainder of this paper, Section 2 reviews related work on robustness
and provides the definition used in this paper. Section 3 presents the model used
to assess heuristics in terms of robustness. Section 4 describes the methodology
of the experiments, Section 5 presents the experimental results and Section 6
concludes the paper.

2. Related work
The literature is abundant of makespan-centric, static DAG scheduling heuris-

tics. For our evaluation, we chose 20 of these heuristics, which include some
of the most widely used and cited. Due to lack of space, we refer the reader to
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the relevant publications for the description of the heuristics. The 20 heuristics,
in alphabetical order, are: BIL [16], CPOP [4], DPS [1], Duplex [8], FCP [17],
FLB [17], GDL [22], HBMCT [18], HCPT [12], HEFT [23], k-DLA [24],
LMT [13], MaxMin [8], MCT [8], MET [8], MinMin [6], MSBC [10], OLB [8],
PCT [15], WBA [6].

Some work in the literature has attempted to define and model robustness;
no widely accepted metric exists. In [2], the authors propose a general method
to define a metric for robustness. First, a performance metric is chosen (this is
the metric that needs to be robust). In our case, this performance metric is the
makespan as we want the execution time of an application to be as stable as
possible. Second, one has to identify the parameters that make the performance
metric uncertain. In our case, it is the duration of the individual tasks and
their communications. Third, one needs to find how a modification of these
parameters changes the value of the performance metric. In our case, the answer
is fairly simple, as an increase of the task or communication duration generally
implies an increase of the execution time (even though, in some cases, a task may
have a longer duration than expected and due to the structure of the schedule,
such modification may not impact the overall makespan). Lastly, one has to
identify the smallest variation of a parameter that makes the performance metric
exceed an acceptable bound. A schedule A is said to be more robust than a
schedule B if this variation is larger for A than for B. However, estimating this
variation is the most difficult part as it requires to analyze deeply the structure
of the problem and its inputs.

In order to simplify this framework, research in the context of evaluat-
ing the robustness of the makespan has proposed several other metrics, such
as: the slack [7, 21, 19]; the probability that an execution exceed some ex-
pected bounds [20] (called the probabilistic metric); measures based on the
Kolmogorov-Smirnov (KS) distance between the cumulative distribution (CDF)
of the performance metric under normal operating conditions and the CDF of
the same performance metric when perturbation applies [11]; or the differential
entropy of the makespan [7]. In [9], we have studied the differences between
these metrics and have concluded that the makespan standard deviation, the
probabilistic metric and the differential entropy are highly correlated. This
correlation was possibly due to the quasi-normality of the makespan distribu-
tion. Intuitively, the standard deviation of the makespan distribution indicates
how narrow this distribution is. The narrower the distribution, the smaller the
standard deviation is. This metric is related to the robustness because when
two schedules are given the one for which the standard deviation is smallest
is the one for which actual executions are more likely to have a makespan
close to the average value. Mathematically, over several different values of the
makespan, the standard deviation is given by σM =

√
avg(M2)− avg(M)2,



76 GRID COMPUTING: ACHIEVEMENTS AND PROSPECTS

where avg(M) is the average value of all makespan values available. The
standard deviation will be used as a metric to assess robustness in this paper.

3. A Stochastic Model to Assess Robustness
We are given an application that is modeled by a stochastic task graph. This

graph is a DAG, where vertices represent computational tasks and edges repre-
sent task dependencies (often due to communication). To model the uncertainty,
task and communication cost are given by a random variable that follows a spe-
cific law (which can be different for all the tasks and communications). Hence,
for each execution of the graph these costs may be different.

The task graph is executed on a set of heterogeneous resources. We as-
sume that the topology of this infrastructure is complete (every machine can
communicate to every one). We use the related model [14] concerning CPU
capabilities: each CPU i is given a value τi, the time to execute one instruction.
This means that if the cost of a task drawn from its random variable is c the
execution time of this task on processor i is ci. Concerning communication,
we model each link by its latency (α) and its bandwidth (β). The time to send
m bytes on link i is then α + β ×m.

As we use static makespan-centric scheduling heuristics to map tasks onto
the processors, we need to adapt the model to compute the schedule. We also
need to compute the distribution of the makespan to determine its mean (average
makespan) and its standard deviation (robustness).

To solve the above issues, we have proceeded as follows. Given a stochas-
tic task graph, we transform it to a deterministic task graph by using only the
mean value of the communication and task duration. With this deterministic
task graph, we compute a schedule using one of our 20 heuristics. To compute
the distribution of the makespan, we simulated, a large number of times, the
execution of the schedule on the (heterogeneous) resources. This is a Monte-
Carlo (MC) method, which means that each time a value for the duration of
a task or communication is needed, this value is generated using the random
variable that described it in the stochastic task graph. This allows us to com-
pute the empirical distribution function (EDF), which converges to the true
law of the makespan as the number of simulations increases, as stated by the
Glivenko-Cantelli theorem. The precision achievable with a given number of
MC simulations is given by the confidence intervals of the calculated approxi-
mations of the makespan mean and standard deviation. Since we consider the
makespan distribution to be approximately normal, we use the Student’s t and
the chi-square distributions to compute these intervals and choose the number
of simulations needed (see below).

Another issue that needs to be taken into account is the following. When
doing a MC simulation of a deterministic schedule using a stochastic task graph,
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it is not always possible, at runtime, to respect the start and end times of each
task (that is, the times that were computed using static estimates). To address
this problem, we propose (and use) two solutions. The first solution is that
on each processor, we fully respect the order of the tasks, as it was produced
by the schedule. A task is scheduled for execution only when all the tasks
that, according to this schedule, must be executed before a given task have
finished. We call this strategy sequence, because on a given processor, all tasks
are executed in the same order than in the static schedule. The second solution
is to respect processor assignments of tasks onto processors, but schedule ready
tasks (that is, tasks whose parents have finished execution and all necessary data
has been transmitted to these tasks) as soon as they become ready. This means
that, sometimes, the order of the tasks, as given by the schedule for a single
processor, may not be respected. We call this strategy assignment, because only
the processor assignments in the schedule are respected, not the order as well.

4. Methodology
There are two phases in our experiments: a deterministic phase and a stochas-

tic phase. In the first phase (deterministic), a specific DAG with static perfor-
mance estimates is the input for each of the 20 static scheduling heuristics to
generate a schedule. These schedules are further evaluated in the stochastic
phase.

Two types of DAG are considered in our experiments. One type is derived
from the Montage astronomy application [5]. The other is a random DAG,
instances of which are randomly generated based on the following approach:
(1) specify the number of nodes; (2) specify the number of levels; (3) randomly
allocate the number of nodes at each level; (4) for each node except the exit,
randomly appoint children nodes (at least one) in its lower neighbor level;
(5) for each isolated node (non-entry node without parent), randomly appoint
parent nodes in its upper neighbour level. In our experiments, we consider both
Random and Montage DAGs with the following numbers of nodes: 58, 100,
500, 740, 1000, and 1186. In random DAGs, the number of levels is equal to
the square root of the number of nodes. By combining each type of DAG with
each different number of nodes, we generate 12 different DAGs.

We adopted the approach used in [3] to model task duration heterogeneity.
A uniform random number Rres ranging from 1 to 10 is generated to describe
resource heterogeneity, and another random number Rtask following the same
distribution is generated to describe task heterogeneity. Thus, the duration to
run task i on resource j is determined by Ti,j = Rres × Rtask. In addition,
the communication cost is modeled to satisfy that the ratio between mean task
duration and mean communication duration is 1.0.
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All DAGs can make use of 10 heterogeneous resources. Using this infor-
mation, for each DAG generated as described above and for each of the 20
heuristics mentioned in Section 2, a static schedule is obtained, which will be
assessed in the stochastic phase.

In the second phase of our experiments, once the deterministic graphs (and
their schedules) have been produced, task durations are replaced by a random
variable (RV) having as a mean the values described above. The distribution
of these RV follows a Beta distribution with parameters α = 2 and β = 5
(see [9] for a justification). In order to fully specify this, we also need to
define the ratio between the maximum and the minimum bounds. We call this
parameter the uncertainty level (UL) and set it to 1.1 on average with a very
low dispersion (the UL is thus almost constant).

Finally, we need to settle the number of MC simulations in order to have a
relevant precision for the calculated approximations of the makespan mean and
standard deviation. To this end, we suppose that the makespan distribution is
normal (as hinted in [9]). We can then easily measure the confidence intervals
of these approximations. We see that for low variations of the makespan (as
in our case), the variation of the standard deviation is preponderant and only
depends on the number of MC simulations. To have less than 5% of preci-
sion with a confidence level of 99% we need 20,000 MC simulations. This
amount increases quickly for better precision (750,000 for 1% of precision, for
example).

5. Experiments
5.1 Normality

Our study is based on the hypothesis that the makespan of a stochastic graph
is normal (it follows a Gaussian distribution). We validated this experimental
hypothesis here by doing the Anderson-Darling (AD) test, which is one of
the best EDF omnibus tests for normality. Intuitively, the statistic obtained
corresponds to the distance of the EDF with a normal distribution. We observe
that 96% of the schedules in the sequence case and 54% in the assignment case
have an AD statistic smaller than 30 (the same as a Student distribution with 8
degrees of freedom). As these AD tests corroborate the normality assumption,
we can reduce the simulation values to only 2 measures (average makespan and
standard deviation) almost without loss of information in most cases.

5.2 Comparison of the sequence and assignment strategies
For each type of DAG, we have represented the performance of all the heuris-

tics in Figures 1 and 2. Each heuristic has a different symbol. The x-axis rep-
resents the average makespan of the schedule produced by the heuristic. The
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Figure 1. Mean vs. standard deviation of the makespan of different heuristics with the sequence
strategy.
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strategy m58 m100 m500 m740 m1000 m1186 r58 r100 r500 r740 r1000 r1186

assignment 0.55 0.20 -0.19 0.76 0.66 0.60 0.73 0.05 0.59 0.44 0.60 0.36
sequence 0.81 0.85 0.62 0.71 0.73 0.62 0.47 0.87 0.97 0.91 0.97 0.89

Table 1. Correlation between makespan and robustness for the assignment and sequence
strategies for different kind of graphs.

y-axis shows the standard deviation, the metric we use for robustness; the er-
ror bars correspond to the confidence intervals of each point with a confidence
level of 99% (the probability for every point to be inside this range is 0.99).
In addition, we plot the best fitting linear function for the points based on the
least squares method. It helps to see the degree of correlation between the aver-
age value of the makespan and the robustness (more profound in the sequence
case). The two figures shown allow the reader to compare the sequence and the
assignment strategies for a certain type of DAG. While the average makespan
does not change significantly in each case, the robustness is considerably worse
with the second strategy.

As observed in the above example, the makespan mean and standard devi-
ation are highly correlated. We compute the linear correlation coefficients (or
Pearson coefficient) for each case and exhibit them in Table 1. This coefficient
denotes the linear relationship existing between two RV (the mean and standard
deviation estimators here). It takes values between−1, in the case of a decreas-
ing linear relationship, and 1, in the case of an increasing linear relationship.
Values close to 0 indicate the absence of a linear relationship. When restricting
to the sequence strategy, the results show a strong correlation between mean
and standard deviation in most cases (more than 0.7 in 75% of cases for the
sequence case). This confirms the results in [9] and extends them in that the
currently studied schedules are near-optimal.

We now investigate the effect of the choice between assignment and sequence
on the schedule performance. In the example above, the most notable impact
was an increase of the standard deviation in the assignment case. We compute
the ratio between the assignment case and the sequence case for the mean and
the standard deviation respectively, and show that this increase is a general
trend. Tables 2 and 3 summarize these ratios by regrouping them with respect
to the task graph or with respect to the heuristics. This table can be read as
follows. For the Montage graph with 58 nodes (m58), the minimum ratio
is 0.92 and the maximum ratio is 1.08, for the average makespan. For the
standard deviation, 75% of the cases (from the 20 heuristics) have a ratio lower
than 1.05. The first five columns indicate that, in most cases, the makespan
remains extremely stable (with only a few extra-cases having more than 10%
of difference). However, when there is a difference, the assignment strategy
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Mean Standard deviation
Graph

Min 25% Med 75% Max Min 25% Med 75% Max

m58 0.92 1.00 1.00 1.00 1.08 0.79 1.00 1.00 1.25 13.8
m100 0.91 1.00 1.01 1.05 1.10 0.95 1.81 4.33 5.85 10.5
m500 0.88 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.25 4.90
m740 0.86 1.00 1.00 1.00 1.00 0.89 1.00 1.00 1.00 1.13
m1000 0.85 0.98 1.00 1.00 1.00 0.96 1.00 1.00 1.01 1.22
m1186 0.87 0.99 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.18
r58 0.92 1.00 1.00 1.01 1.06 0.99 1.00 1.00 2.55 11.3
r100 0.87 0.99 1.00 1.02 1.05 0.81 1.00 1.32 2.58 5.72
r500 0.82 0.91 1.01 1.03 1.07 1.48 2.50 3.88 5.93 8.46
r740 0.84 0.99 1.04 1.10 1.17 3.14 4.58 6.53 8.32 11.1
r1000 0.81 0.90 1.00 1.05 1.08 2.34 3.20 3.72 4.57 6.99
r1186 0.78 0.97 1.01 1.10 1.16 3.72 6.09 7.45 9.33 14.0

Table 2. Tukey’s five number summary (quartiles) of ratio between the assignment case and
sequence case for makespan and robustness; task graph view.

Mean Standard deviation
Heuristics

Min 25% Med 75% Max Min 25% Med 75% Max

BIL 0.93 0.99 1.00 1.04 1.13 0.98 1.00 2.10 4.16 11.0
CPOP 0.87 0.90 0.91 0.99 1.10 0.79 1.01 1.11 4.52 10.5
DPS 0.78 0.85 0.88 0.92 1.03 0.89 1.01 3.24 5.40 9.59
Duplex 1.00 1.00 1.02 1.03 1.06 1.00 1.00 2.40 4.07 6.98
FCP 1.00 1.00 1.01 1.06 1.06 1.00 1.00 1.50 5.62 6.80
FLB 0.94 0.99 1.00 1.00 1.03 0.96 1.00 1.93 3.68 8.46
GDL 1.00 1.00 1.01 1.04 1.16 0.99 1.00 2.24 5.91 11.1
HBMCT 1.00 1.00 1.02 1.06 1.10 0.98 1.00 3.41 7.31 9.72
HCPT 0.86 0.88 0.92 0.98 1.08 0.94 1.08 3.30 5.45 13.8
HEFT 1.00 1.00 1.00 1.07 1.16 1.00 1.00 1.57 6.48 14.0
KDLA 1.00 1.00 1.02 1.05 1.17 0.99 1.00 2.79 5.55 8.94
LMT 0.91 0.96 0.98 1.00 1.03 0.83 0.99 1.00 2.16 8.04
MaxMin 0.98 1.00 1.00 1.01 1.02 0.81 1.00 1.68 2.56 6.20
MCT 1.00 1.00 1.01 1.02 1.05 1.00 1.00 2.72 4.67 8.50
MET 0.85 0.87 0.94 1.00 1.00 0.92 1.00 1.56 6.99 11.3
MinMin 1.00 1.00 1.01 1.03 1.06 1.00 1.00 1.65 4.07 6.98
MSBC 0.82 0.87 0.98 1.00 1.00 1.00 1.04 1.20 2.53 4.46
OLB 0.98 1.00 1.00 1.00 1.02 1.00 1.00 1.00 5.11 8.52
PCT 1.00 1.00 1.00 1.07 1.16 0.84 1.00 1.19 6.25 11.1
WBA 0.99 1.00 1.00 1.00 1.05 1.00 1.00 1.03 3.70 8.01

Table 3. Tukey’s five number summary (quartiles) ratio between the assignment case and
sequence case for makespan and robustness; heuristics view.
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Montage Random
Rank

mean std dev mean std dev

1 GDL [1.7] GDL [2.0] HEFT [2.7] HEFT [3.7]
2 HBMCT [3.7] HEFT [2.8] PCT [3.3] PCT [4.2]
3 BIL [4.2] KDLA [3.3] Duplex [3.7] HBMCT [4.8]
4 HEFT [4.5] PCT [3.5] GDL [4.8] Duplex [5.7]
5 PCT [4.5] BIL [5.7] MinMin [5.5] GDL [6.3]
6 KDLA [6.3] HBMCT [6.8] MCT [7.2] KDLA [6.3]
7 Duplex [7.0] FCP [9.0] KDLA [7.3] MaxMin [6.7]
8 MCT [8.5] Duplex [10.7] MaxMin [7.5] MinMin [7.0]
9 MinMin [9.2] MSBC [10.8] HBMCT [7.8] MCT [9.5]
10 MaxMin [9.8] MaxMin [11.0] BIL [12.0] WBA [11.0]
11 FCP [11.0] CPOP [11.3] FCP [12.5] BIL [12.3]
12 WBA [11.7] MCT [12.3] WBA [13.0] DPS [12.3]
13 MSBC [13.7] WBA [13.0] LMT [14.2] HCPT [12.7]
14 OLB [13.8] MinMin [13.5] CPOP [14.3] LMT [13.7]
15 CPOP [14.2] LMT [13.8] FLB [14.3] CPOP [14.0]
16 FLB [15.0] OLB [14.5] HCPT [14.3] FCP [14.8]
17 LMT [16.0] FLB [14.7] DPS [14.8] FLB [15.2]
18 MET [18.3] DPS [15.7] MET [15.5] MET [15.2]
19 DPS [18.5] HCPT [16.5] OLB [16.8] OLB [17.0]
20 HCPT [18.5] MET [19.0] MSBC [18.3] MSBC [17.7]

Table 4. Makespan and robustness ranking of the heuristics for the montage and random task
graph cases.

allows more gain than the sequence strategy. Regarding the robustness metric, in
most cases the assignment strategy is at least two times worse than the sequence
strategy and in extreme cases, it can be up to one order of magnitude worse. This
signifies that the assignment strategy is inferior in term of robustness but almost
equal in terms of average makespan performance. In Table 3, this comparison
can also be thought as a kind of sensitivity analysis of the stability of the schedule
generated by a given heuristic. Even though the quantity of schedules is too low
to draw any conclusion with respect to this point, it appears that heuristics such
as LMT, MaxMin, MSBC are among the most stable. Similarly, the montage
graph seems to be in general less sensitive than random graphs.

5.3 Heuristic comparison
In this last part, we rank every heuristic with the sequence strategy as this

strategy has been shown superior in the previous section. Table 4 features
the best heuristics in term of both the mean and the standard deviation of the
makespan, and for the two types of task graph (random and montage). While
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the precision for the makespan mean is always below 0.1%, the precision for
the standard deviation is only 5%. We observe that the best heuristic for the
montage graphs is GDL and for the random graphs, HEFT (in term of both
average makespan and robustness).

6. Conclusion
In this paper we have studied the robustness of 20 static makespan-centric

DAG scheduling heuristics from the literature, using as a metric for robustness
the standard deviation of the makespan over a large number of measurements.

Our results are three-fold. First, we have shown that it is better to respect the
static order of the tasks on the processors than to change this order dynamically.
Second, we have shown that robustness and makespan are somehow correlated:
as it has been suggested elsewhere [19], schedules that perform well statically
tend to be the most robust. Third, we have shown that, for the cases we have
studied, heuristics such as HEFT, HBMCT, GDL, PCT, are among the best for
both makespan and robustness.

Future work can be directed to the study of robustness-centric heuristics like
slack-based or convex clustering strategies. Another direction is to develop
multi-criteria strategies (that both optimize robustness and makespan). Lastly,
it would be interesting to see how to deal with stochastic information inside a
deterministic heuristic, instead of only using the mean, as in this present work.
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1. Introduction
End-to-end network monitoring substantially contributes to the usability of

Grid resources, but it introduces distinctive problems.
One is that its complexity potentially scales up with the square of the size of

the system. To ensure its scalability, end-to-end network monitoring must be
selective in its targets: only a significantly small fraction of end-to-end paths
can be monitored at each time. As a consequence, whatever the criteria to
select which path is to be monitored, we need some sort of distributed infras-
tructure in order to activate and deactivate network monitoring selectively.

Another problem comes from the accessibility of the resource: we often
observe that the monitoring tool requires some sort of cooperation from the
resource itself: for instance, even the trivial ICMP ping requires that packets
are freely propagated, which is not always true. As a general rule, an end-to-
end network element must be treated as an opaque box, showing a performance
which is traffic specific. One way to overcome this problem is to use passive
measurement techniques, instead of active, thus analysing existing traffic.

Summarizing, we establish two cornerstones for an end-to-end network mon-
itoring architecture capable of managing the scalability challenge offered by a
Grid environment: i) demand driven, in the sense that its activity is not set by
default, or with static configurations, but controlled by external agents, and ii)
passive monitoring oriented, in the sense that only existing traffic is analysed
in order to obtain the requested measurements.

The next section goes into the details of a novel architecture which is based
on the above foundations: it is the result of a joint activity of INFN-CNAF
(Italy) and FORTH (Greece), in the frame of the European CoreGRID project.

2. The components of a demand driven network
monitoring architecture

Our architecture, named gd2, partitions Grid end-points into Domains (see
figure 1). A Network Monitoring Agent (Agent, in the rest of this paper) takes
the responsibility of managing a number of Network Monitoring Sensors (Sen-
sors, in the rest of the paper), and of agents enabled to submit network monitor-
ing requests, the Network Monitoring Clients (Clients, in the rest of the paper)
that compose the Domain. There are good reasons to introduce a partitioning,
roughly the same that motivate its introduction in many aspects of networking:
reducing complexity – one Agent concentrates the interface to the entities in-
side a domain; security containment – security issues can be managed using
local credentials inside a domain; limiting global state access – only Agents
have access to the global state, thus simplifying its management and ensuring
security.
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Figure 1. Deployment of gd2 components in a Domain: E units represent generic monitoring
endpoints, A labelled units represent Network Monitoring Agents, S units represent Network
Monitoring Sensors

2.1 The Network Monitoring Agent
The services offered by an Agent can be divided into two quite separate sets:

one towards the other Agents (back end), and another towards local sensors and
clients (front end), this partitioning can be seen in figure 2. We examine these
two faces, and next detail the internal structure of the agent.

The back end part is in charge of maintaining the membership of the Agents
in the system. Such membership is the repository of two relevant data: 1)
the credentials of the Agents, needed to enforce security in communications
among the agents, and 2) the components of each domain.

As for the first point, we envision a public/private key scheme as adequate
for our purpose: we consider that security primarily avoids the intrusion of
malicious entities disguised as Agents. Whenever the results of the monitor-
ing activity are considered confidential, Clients and Sensors will be in charge
of encrypting sensitive data according to agreed methods. In order to control
access to the membership, we assume the existence of an external entity in
charge of key creation and assignment. This Authority, upon admission of a
new agent, releases a certificate, which entrusts the use of the public key as
authorized by the Certification Authority. Each Agent has access to a reposi-
tory containing the certified public keys, and each communication within the
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Figure 2. Internal architecture of a Network Monitoring Agent. The Back End interfaces are
located in the innermost stripe

membership is accompanied by the signature of the sender (not encrypted, in
principle), which can be checked using the public key.

An agent offers a back end service for requests delivery: it routes requests
coming from other Agents and from the front end toward their destination. For
this purpose an agent analyses the content of the request to determine its next
hop, and then it delivers the request: such routing is made possible through
Agents’ membership informations access. Every request passing through an
Agent leaves a track in the Agent’s Soft State: informations stored in the Soft
State are later used for routing streams back to Clients.

An Agent offers another back end service for the transport of Network Mon-
itoring data to the Client that requested it: such transport service consists of a
stream from the Sensor to the Client, and is routed transparently through the
reverse of the path used to deliver the request. The content of the stream may
be encrypted, in case the network monitoring results are considered as confi-
dential, but the client(s) must own the key to decrypt the data: here we assume
that such keys are negotiated when the network monitoring task is accepted for
execution.

The front end of the Agent is in charge of interacting with Clients and Sen-
sors inside the Domain: the Agent accepts requests for Network Monitoring
from the Clients, and drives the Sensors in order to perform the requested net-
work monitoring activity.
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The network monitoring activity is organized into Network Monitoring Ses-
sions (or Sessions, in the rest of this paper). A session describes the endpoints
of the Network Monitoring activity, as well as the kind of activity required.
The request must determine, either implicitly or explicitly, the features of the
stream that will be produced to return observations to the Client. In [5] we give
an XML Schema Definition for such data structure, the Session Description.

The Clients submit their requests to the Agent as Session Descriptions. The
Agent is in charge of checking whether the request comes from an authorized
client: this functionality is achieved by a trust supported internally to the do-
main, independent from that used within the membership of the agents. This
allows the possibility of merging domains with distinct security policies and
support.

An agent, upon receiving a request for a domain it controls, analyses its con-
tent to assess its ability to configure a Sensor able to perform the the required
task: to this purpose, the Agent must have access to a directory, internal to the
domain, containing the descriptions of the sensors.

Figure 3. Modular view of a Network Monitoring Agent

The abstract functionalities described above have been implemented as a
multi-threaded daemon (see figure 3). The StreamProxy thread is in charge
of passing through the streams of data from sensors. It is composed of four
threads that implement a pipe composed of four tasks: to receive the packet,
to verify its signature, to generate the new signature, and to send the packet
to the next hop. These threads utilize the AgentRetriever API provided by
the database in order to have access to the Domain Directory, and the APIs
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used to access the shared Soft State through the interface ConnectionState. It
implements the "Stream IN, Stream OUT" boxes in Figure 2.

The RequestManager is another thread in charge of routing network mon-
itoring requests, and implements the "Request IN, Request OUT" boxes in
Figure 2. As in the case of the StreamProxy, the ConnectionState and the
AgentRetriever interfaces grant access to the Soft State and to the Domain Di-
rectory.

Requests are acquired by a SimpleHTTPServer thread that offers a SOAP
interface to the Clients, and they are delivered to the RequestManager through
its IRequestInterface interface.

The RequestManager controls the Sensors through a set of plugins, each of
them specifically designed in order to drive a specific kind of sensor.

2.2 The Domain Database
In order to understand the role of the Domain Database, we illustrate the

decisions that the Agents take on the basis of its content.
The first decision step on this way is performed by the Agent once it receives

a request from a Client: it consists in determining the Source and Destination
domain of the network element under test. Such information is obtained by
way of a query to the Domain Directory. The request is then forwarded to an
Agent in such domains: the identity of such agents and their address is again
obtained from the Domain Directory.

Each agent on the way of the Request will in turn check the signature as-
sociated to the request, and replace it with its own. A query to the Domain
Directory returns the public key needed to check the signature.

Each agent in turn will check the availability of the network monitoring
functionality within the domain. This step is performed without further ac-
cess to the Domain Directory, but browsing the capabilities available within
the domain. Therefore the search for a producer is restricted within a limited
number of sensors: such search can be either based on a local directory, or
simply carried out broadcasting the request template to the local sensors.

The above discussion explains why the Domain Directory is to be consid-
ered a critical component in the structure: it is a potential single point of failure,
and a performance bottleneck. A centralized implementation is therefore in-
compatible with the scalability of our architecture. However, the information
stored in the Domain Directory is seldom updated, and this opens the way to
strongly distributed solutions.

There are several options, that depend on the scale of the Grid of concern.
One is to apply to a LDAP or DNS based implementation. Such well known
tools are ready solutions for the maintenance of a distributed, that allow data
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replication in order to improve performance and fault tolerance. Such solution
is probably adequate to most current scenarios.

Going beyond such scale, we indicate the implementation of a fully delocal-
ized solutions: in essence, all Agents cache a part of the database, and updates
are propagated according with a peer to peer protocol. Such approach may
significantly improve scalability, while reducing the footprint for the mainte-
nance of the Domain Directory. A theoretical investigation about the topic are
reported in [3], while experimental results are in [4].

2.3 A passive Sensor and its plugin
Passive monitoring sensors are usually located at selected vantage points

in the network that offer a broad view of the traffic of a domain, such as the
access link that connects a LAN with another, or an Autonomous System to
the Internet.

To support passive network measurements using the gd2 architecture, we
have developed a plugin within the Network Monitoring Agent which controls
the passive monitoring sensors. The passive monitoring plugin first receives
the configuration parameters for the passive network measurements from the
client’s request: available measurements are round-trip time [7], delay and
jitter, packet loss rate [8], available bandwidth, and per-application bandwidth
usage [1], based on the the Distributed Monitoring Application Programming
Interface (DiMAPI) [13] developed at FORTH. These parameters are derived
from the measurement specific part of the session description document, while
the MAPIOptions element provides the relevant parameters for the passive
monitoring tools.

When the starting time of a measurement comes, the passive monitoring plu-
gin invokes the execution of a DiMAPI program that coordinates the remote
monitoring sensors for the task. Dynamic configuration of the sensor includes
the specification of packet filters, the definition of the processing operations
that should be performed for each network packet, and the kind of results that
should be produced, using the suitable DiMAPI functions [13]. The measure-
ment results from each sensor are periodically sent to the DiMAPI program
for aggregation and then returned to the plugin in the NMA. Finally, the plu-
gin parses the results and sends them to the consumer through an encrypted
connection.

Figure 4 presents an example of a passive measurement session for the
packet loss ratio between two different domains: we emphasize that such a
measurement requires sophisticated techniques in order to be performed ac-
cording with a passive approach to network monitoring. Initially a client sub-
mits a request to the local NMA (1), and the request is forwarded to a corre-
sponding NMA (2) that should perform the measurement. Then, the passive
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Figure 4. Invoking a passive measurement for packet loss ratio in gd2: a plugin inside NMA
initiates a DiMAPI program which gathers results from two remote sensors

monitoring plugin parses the request and initiates the execution of a DiMAPI
program that computes the packet loss ratio between the two domains using
data from two corresponding monitoring sensors. The program first configures
the two sensors (3) and then the results are streamed from the sensors to the
DiMAPI program (4), which computes the packet loss ratio and reports it to
the passive monitoring plugin. Finally, the results are streamed to the local
NMA (5) and to the client (6).

We have currently implemented the passive monitoring plugin to support
appmon [1], a DiMAPI based tool that reports the accurate bandwidth usage
for individual protocols and applications, and packet loss [8] measurement
tools.

3. Related works
The NPM architecture [9] is one of the most promising proposals for net-

work monitoring, and is presently embedded in the gLite infrastructure, de-
signed and implemented in the framework of the European Project EGEE.
NPM is designed to provide two types of information: measurement data, in
the form of data records conforming to OGF standards, and metadata, indicat-
ing what kind of data are available for a given network element. Such infor-
mation is delivered to clients, whose role is to diagnose network performance
problems.

NPM strongly focuses on the accessibility of historical data: this makes
a relevant difference compared to our perspective. In fact, since we mainly
address data collected on demand, we necessarily exclude, for performance
reasons, a web service oriented architecture for the retrieval of measurements.
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Instead we introduce a long lived communication entity, a stream. For the
same reason we need not to address a large database of collected data: data are
delivered to interested users, without being stored anywhere (unless a Client
wants to do so). In our architecture the discovery activity focuses on a far less
complex task: determining where to fire the measurement session.

We conclude our discussion remarking that a direct comparison is in fact
inappropriate: the two frameworks, NPM and gd2 address two distinct prob-
lems, and each of them is a poor solution when applied to the problem for
which it has not been explicitly designed. A gd2 Agent is designed to diag-
nose network problems once they have been detected, but has no detection
tools: here we present a framework that helps detecting a network problem,
and possibly overcome its presence without diagnosing its source. The NPM
has an extremely heavy footprint when used to receive real time updates of the
performance of a network element, which is needed to detect problems; our
framework has no way to explore the past of an observation, tracking up to its
cause.

Since their application domains are different, one may guess that they may
live side-to-side in the same infrastructure. We believe that this is possible, at
least in perspective.

The approach presented in this paper is also complementary with the IPFIX
project [11]: the purpose of the IETF initiative is to design a protocol for flow
metering data exchange between IPFIX Devices (corresponding to sensors in
out framework) and IPFIX Collectors (Clients in our framework). Such a pro-
tocol roughly corresponds to the payload of the Sensor to Client stream, and
can be used whenever network utilization has the characteristics of a flow. We
plan to converge to an IPFIX compliant architecture, and an IPFIX interface
for MAPI is under work.

A monitoring infrastructure which inspired our work is CoMo [6], a passive
monitoring infrastructure invented by Intel. A branch of this project covers
the placement of passive sensors [2], a relevant issue that is not considered
in our paper. The CoMo research team explores many relevant aspects of net-
work monitoring, but fails to give an exhaustive description of the conversation
between the Sensor and the Client, which is the main purpose of our work.

4. Prototype layout and operation
The purpose of our prototype was to assess the feasibility of the whole gd2

architecture, focussing on the communication infrastructure: therefore we tried
to concentrate our efforts in order to produce a real scale support for a commu-
nity of Agents, leaving behind other aspects.

We implemented a fully functional request delivery infrastructure, as well
as the streaming in charge of returning the data to the requester. We took
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Figure 5. Development testbed

into account the security issues mentioned above, using signed communica-
tions among the Agents, taking care of the organization of the content of the
database.

One of the aspects that are considered to a limited extent is the implemen-
tation of the database: we have implemented a solution based on an LDAP
directory, whose scalability is similar to other solutions based on this technol-
ogy.

In order to debug and demonstrate the functionality of the prototype, we
have implemented a virtual testbed using NETKIT [12], based on the User
Mode Linux technology, which allows to virtualize several distinct hosts, as
well as an interconnection network, on a single computer. The major advan-
tage of such an approach is that the experiments can be easily replicated on
distant sites, thus allowing a collaborative development of the software with-
out need of sharing hardware facilities, and always run under extremely con-
trolled and uniform conditions. Demonstrations can be produced using any
available Linux machine, and without installing experimental software on the
real computer1.

In our testbed we synthesize a network composed of three Agents and two
routers (see figure 5): each of the Agents lives in a distinct domain. One
of the Agents was equipped with a Client interface able to generate Network
Monitoring Requests.

1The package with the virtual testbed (designed for Ubuntu Linux) is available at
http://network-monitoring-rp.di.unipi.it/, with instruction for its installation
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A real testbed is under development through a collaboration between INFN
and FORTH institutes and we are working on the construction of a version
whose allows to perform scalability and reliability tests on a real environment.
With this real testbed we count to perform some rigorous evaluations on costs
introduced by this architecture: we voluntary left them in the background to
concentrate on a more clear architecture development.

5. Conclusions
Our investigation leads to a clear view of the problems related to on de-

mand network monitoring, and to the change of attitude needed with respect
to a diagnosis-oriented network monitoring. A demand driven architecture is
not data-centric, in the sense that storage and indexing of measurements are
not relevant, but more capability-centric, in the sense that operational network
monitoring capabilities must be indexed, and protected against misuse. There-
fore we need an architecture that is able to give a structure to the membership
of the components that have monitoring capabilities, so to provide a capability
based addressing of the monitoring resources.

Using such a capability-centric model it is nonetheless possible to collect
data to be used for diagnosis purposes. the tools provided by gd2 allow to
collect and to keep an historical trace of measurements but also to request real
time, non-periodic updates on the status of the network elements. This latter
point discloses new horizons to network monitoring, by just not confining it to
a problems detection role, but allowing to be used for a new set of activities,
like, for example, best performance data source location in a replica manage-
ment scenario.

We have identified a cornerstone concept in a topology-bound partitioning:
such structure must be sufficiently stable, in order to allow a distributed man-
agement of the directory that describes the partitioning. In order to effectively
abstract from the internal structure of a domain, we introduce components that
manage the monitoring capabilities within a domain.

Data transfer must focus on long lived, low bandwidth data transfers: a less
than best effort paradigm seems appropriate for their definition. This seems to
match with a stream oriented protocol, that uses routing information obtained
during the delivery of the network monitoring request.

In such scenario, passive monitoring is not only an option motivated by a
low footprint. Passive end-to-end monitoring capabilities can be concentrated
in a few locations within a domain, thus simplifying the indexing of available
capabilities instead of scattered on each possible endpoint, which comes as a
crucial advantage also in the deployment of the network monitoring infrastruc-
ture.
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1. Introduction

Future applications and services in Pervasive and Grid environments will
need to support more and more distributed and collaborative processes. So,
systems should have the ability to cope with highly dynamic environments in
which resources change continuously and in unpredictable ways, and might even
be not existent when designing the system, thus calling for runtime discovery
and composition.

While expectations on the quality of these systems are increasing dramati-
cally, current methods, techniques, and technologies are not sufficient to deal
with adaptive software in such dynamic environments.

Service-oriented architecture (SOA) represents a promising model for these
environments. Services, in fact, are becoming important building blocks of
many distributed applications where a loose connection among components
represents a key aspect to better implement functional distribution (i.e. contexts
in which distribution is fundamental for implementing applications) and scala-
bility (i.e. the ability to easily extend functional properties of a system). SOA
can be usefully exploited in Grid computing to dynamically acquire available
computational, communication or storage resources characterized by desired
QoS offerings, to compose high-level functions for solving complex problems
or to enable virtual organizations.

Despite its application in many domains, the supervised approach of SOA-
based technology for service discovery, composition, and execution can be a
strong limitation since it represents a bottleneck from a performance point of
view and imposes a centralized knowledge to discover services useful to address
a specific goal.

The paper presents an approach based on P2P to overcome currently adopted
connection and coordination models, which enables fully distributed and co-
operative techniques for discovery, composition and enactment of services,
optimized through semantic overlays. In particular, the paper shows a tech-
nique that reduces the time for automatic service composition with respect to
the centralized approach. The technique is mapped on P2P networks by exploit-
ing two mechanisms for improving performance and scalability: (1) network
partitioning to reduce message flooding and (2) an ant-inspired algorithm that
allows for an efficient reorganization of service descriptors. This way, a service
discovery procedure can discover the basic components of a composite service
in a shorter time and with lower network traffic.

These two techniques, respectively proposed by FORTH [6] and CNR-ICAR
[3] are integrated with a previous work implemented at the University of Sannio
on P2P service composition [7] to improve its performance and scalability.

The rest of the paper is organized as follows. Section 2 analyzes the state
of the art in service discovery and composition by discussing related work.
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Section 3 presents a distributed planning technique to compose services in a
workflow by exploiting a P2P model and discusses some possible mapping on
P2P networks. Section 4 proposes a first improvement at network level by
transforming an unstructured P2P network in a semi-structured one based on
partitions that capture domains of knowledge in the service network. Section
5 shows an ant-inspired algorithm to aggregate descriptors of services related
to the solution of the same problem or the most used services for solving a
specific problem. Finally, Section 6 concludes the paper and highlights future
work among the CoreGrid partners.

2. Related Work

Service discovery is typically performed through centralized middleware
components, such as registries, discovery engines and brokers. They will
become a serious bottleneck when the number of services and organizations
using services will grow, since service discovery requires using sophisticated
matchmaking algorithms to identify semantic similarities between consumers
template and providers target descriptions.

Distributed registries and registry federations have been proposed as a first
approach to avoid bottlenecks in a service network [8–9]. METEOR-S [10] and
PYRAMID-S [11], on the other hand, propose a scalable P2P infrastructure
to federate UDDI registries used to publish and discover services; it uses an
ontology-based approach to organize registries according to a semantic classi-
fication based on the kind of domains they serve. Even though these solutions
well address scalability and fault-tolerance through federation of registries, they
use a structured topology of registries built on the basis of a domain-specific
ontology, so enforcing significant constraints on publication policies.

In [12], the authors propose a distributed federation of registries coordinated
by a publish/subscribe infrastructure that is able to dispatch to the interested
clients service availability as soon as a service is published in the network,
by adopting a bus-oriented infrastructure to decouple registries. The proposed
architecture is flexible but scalability is constrained by the number of organi-
zations connected to the bus. Anyway, the infrastructure is mainly adopted to
discover and not to compose existing services to solve a more complex problem
than the ones directly solved with atomic published services.

Here, we propose a P2P model to exploit cooperative approaches for ser-
vice discovery, composition and enactment. This goes beyond existing P2P
technologies such as Gnutella and JXTA, which implement a primitive form
of service composition through the dynamic construction of paths through the
network to address queries.
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Figure 1. Cooperative composition of services to satisfy a goal. a) Space of peers and services.
b) Space of states

3. Self-organizing P2P Service Network

A service network should be able to self-organize in a dynamic and adaptive
way, in order to follow environmental changes and to structure the knowledge
for continually optimizing service discovery and composition. In such a system
of services, nodes should be able to communicate to find each other through
discovery mechanisms that ensure high efficiency and scalability, with the aim
of reducing response times. To this end, each node should be able to interpret
an incoming goal and to give a partial or total contribution to the solution,
even individuating other nodes in the network able to contribute with a piece
of knowledge.

Figure 1 a) shows an example of cooperative composition in the space of
services. Each node represents a peer hosting one or more services. Each
sevice published on a peer exposes one operation identified through the label
Pr → Po, which means that Pr is the precondition and Po is the postcondition
of an operation. Node 1 injects in the network a goal (A → Z) with the aim of
discovering and composing the services whose execution changes the state of
the system from A to Z .

Figure 1 b) shows the composition in the space of states. Each node represents
a state whereas the transition between two states identifies a service that changes
the system from a state to another one. The composition is the shortest path
between the postcondition Z and the precondition A of the desired abstract
services.
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Figure 2. Group identification after a composition

3.1 Discovery and composition

Each node in the network contributes to discover the peers that can originate
useful compositions. According to the P2P model, peers become a crucial
part of the architecture, since with this model the network lacks of structural
components for discovery and composition.

Each peer is responsible of receiving requests from other nodes (goals),
and fulfilling them (i) by relying on service operations or lower level features
available on each peer or (ii) by forwarding the request to other known peers
(see Fig. 1 a). In many cases a peer can be able to fulfill a request by composing
some of its operations with operations made available by other peers (see peers
1, 9, 7, 11). In such a case, a peer is also responsible of composing these
operations, to fulfill either partially or totally the request received.

When a goal is resolved, the submitter peer receives either the composition
of services or simply the identifier of the first service/peer to contact in order
to start a distributed execution.

3.2 Network topology and overlays

When a composition is identified (see Fig. 2), the network implicitly aggre-
gates the participating peers to form a new group that will simplify successive
discovery and composition operations. This process is executed continually in
the network, giving rise to several virtual layers of peers able to solve different
problems at different abstraction layers. Therefore we can imagine having two
distinct dimensions for the specialization of services: (1) a first dimension that
organizes services according to the domain in which they are used, and (2) a
second dimension that organizes services in groups to simplify new and more
complex compositions.
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Simulation experiments with compositions of 10 services belonging to a
space ranging from 10 to 640 services/peers have demonstrated a speed-up
ranging from 3.5 to 19 without grouping and from 4.7 to 129 with groups. This
demonstrates that mapping the concepts presented above on a P2P network is
a crucial concern to achieve high performance.

However, techniques based on network information limit the traffic in the
network since queries are routed only to the peers that host the desired resource.
In Distributed Hash Tables (DHT) for example, each peer or resource is mapped
to a unique identifier in a known identifier space. The combination of unique
identifiers and a known space from which these identifiers are drawn, allows
routing to be achieved efficiently. The payoff for this efficiency however, is
that such architectures require a highly structured network and do not well
support ad hoc configurations. The strong constraints imposed to the publica-
tion of service advertisements severely limit the possibilities for cooperation
among peer nodes. The lack of a single point of failure in P2P unstructured
networks ensures a better fault tolerance of the overall system whereas the
availability of a potentially non-limited storage capacity for indexing increases
significantly network scalability. Unfortunately, unstructured networks typi-
cally adopt flooding to broadcast discovery messages to all the reachable peers
connected to the network.

4. Network partitioning

One way to reduce the cost of flooding is to partition the overlay network
into a small number of distinct subnetworks and to restrict the search for in-
dividual request to one network partition. The Partitions scheme, proposed in
this section, enriches unstructured P2P systems with appropriate data location
information in order to enable more scalable resource discovery, while not af-
fecting at all the self-healing properties and the inherent robustness of these
systems.

More specifically, Partitions employ a universal uniform hash function to map
each keyword to an integer, from a small set of integers. Each integer defines a
different category. Thus, keywords are categorized instead of services/content.

The keyword categories are exploited in a 2-tier architecture, where nodes
operate as Ultrapeers and/or Leaves. The partitioning of the network is per-
formed as follows (see Fig. 3):

Each Ultrapeer is randomly and uniformly assigned responsibility for a
single keyword category. Ultrapeers responsible for the same category
form a random subnetwork. As a consequence, the network overlay is
partitioned into a small number of distinct subnetworks, equal to the
number of available categories.
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Figure 3. Illustration of the Gnutella network and the Partitions design.

Leaves randomly connect to one Ultrapeer per subnetwork. Furthermore,
each Leaf sends to each Ultrapeer it is connected to all its keywords, in
the form of a bloom filter, that belong to that same category. Thus, an
innovative index splitting technique is used. Instead of each Leaf sending
its entire index (keywords) to each Ultrapeer it is connected to, each Leaf
splits its index based on the defined categories and constructs a different
bloom filter for each keyword category. Each bloom filter is then sent to
the appropriate Ultrapeer. An illustration of this technique can be found
in Fig. 4.

Figure 4. The Partitions and Gnutella bloom filters.

We should emphasize that in this design Ultrapeers are de-coupled from their
content, meaning that peers operating as Ultrapeers will have to also operate
as Leaves at the same time in order to share their own content, which spans
several categories. Furthermore, even though in this design each Leaf connects
to more than one Ultrapeers, the volume of information it collectively transmits
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to all of them is roughly the same since each part of its index is send to a single
Ultrapeer.

The Partitions scheme is demonstrated in Fig. 3. The unstructured overlay
network is partitioned into distinct subnetworks, one per defined category. A
search for a keyword of a certain category will only flood the appropriate sub-
network and avoid contacting Ultrapeers in any other network partition. The
benefit of this is two-fold. First, it reduces the size of the search for each in-
dividual request. Secondly, it allows each Ultrapeer to use all its Ultrapeer
connections to connect to other Ultrapeers in the same network partition, in-
creasing the efficiency of 1-hop replication at the Ultrapeer level. One-hop
replication dictates that each Ultrapeer contains an index of the contents of its
neighbouring Ultrapeers (including the contents of their Leaves).

There are, however, two obvious drawbacks to this design. The first one
is due to the fact that each Leaf connects to more than one Ultrapeers, one
per content category. Even though each Leaf sends the same amount of index
data to the Ultrapeers collectively upon connection as before, it requires more
keepalive messages to ensure that its Ultrapeer connections are still active.
Keepalive messages however are very small compared to the average Gnutella
protocol message. In addition, query traffic is used to indicate liveliness most
of the time, thus avoiding the need for keepalive messages.

The second drawback arises from the fact that each subnetwork contains
information for a specific keyword category. Requests however may contain
more than one keywords and each result should match all of them. Since each
Ultrapeer is aware of all keywords of its Leaves that belong to a specific cate-
gory, it may forward a request to some Leaf that contains one of the keywords
but not all of them. This fact reduces the efficiency of the 1-hop replication
at the Ultrapeer level and at the Ultrapeer to Leaf query propagation. This
drawback is balanced in two ways. The first is that even though the filtering is
performed using one keyword only, Leaves’ bloom filters contain keywords of
one category, which makes them more sparse, thus reducing the probability of
a false positive. Furthermore, the most rare keyword can be used to direct the
search, further increasing the effectiveness of the search method.

Simulation experiments have been conducted for 10, 30, and 60 network
partitions. The results demonstrated in Fig. 5 show that the Partitions scheme
reduces significantly the number of messages generated through flooding while
simultaneously reducing the network load observed by each Ultrapeer.

5. Ant-inspired reorganization of descriptors

Inside each partition, the construction of a composite service (workflow)
needs the identification of the basic services that will compose the workflow,
and the discovery of such services on the network. This is generally reduced
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Figure 5. (a) Number of messages generated in one flood.(b) Query traffic observed by each
Ultrapeer.

to the problem of finding service descriptors, through which it is possible to
access the corresponding services.

In general, the construction of a workflow implies the generation of a dis-
covery request for each of the required basic services, which can result in long
discovery times and high network loads. The technique described in Section
4 allows for reducing flooding generated by discovery operations (by creating
different domains). To further enhance performances, it would be useful to
place descriptors of services that are often used together (i.e., in the same com-
posite services) in restricted regions of the system, so that a single discovery
operation will have high chances to find all or most of the required services in
a short time (groups). Accordingly, we propose an ant-inspired technique to
reorganize and sort the service descriptors in order to facilitate the composition
of workflows.

Descriptors are indexed through bit strings, or keys, that are generated by a
hash function. The hash function is assumed to be locality preserving [2, 5],
which assures that similar descriptor keys are associated to similar services. In
this context, two services are defined as similar if they are often used together
to compose a workflow. This type of similarity must be based on a statistical
analysis of co-occurrences of services in the workflows characterized by similar
semantics.

Our algorithm is inspired by the behavior of some species of ants [1], that
sort items or corpses within their environment. The algorithm described in this
paper has been specifically designed to sort service descriptors, i.e., to place
descriptors of services that are often co-used in composite services in neighbor
peers, in order to facilitate and speed up their discovery. This work is inspired
by the work of Lumer and Faieta [4], who devised a method to spatially sort
data items through the operations of robots. In our case, descriptors are not only
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sorted, but also replicated, in order to disseminate useful information on the
system and facilitate discovery requests. The behaviour of ants is here imitated
by mobile agents that, while hopping from one peer to another, can copy and
move service descriptors. Agents are able to disseminate and sort descriptors on
the basis of their keys. Therefore, services descriptors individuated by similar
keys will likely be placed in neighbour peers. This facilitates the composition
of workflows in three ways:

(i) the ant-inspired agents are able to create and disseminate replicas of
service descriptors, thus giving discovery operations more chances to succeed
and improving the fault tolerance characteristics of the system;

(ii) the discovery of a single service is facilitated because discovery messages
can be driven towards the target descriptor in a very simple way. At each step
the discovery message is sent to the neighbor peer whose descriptors are the
most similar to the target descriptor. Due to the sorting of descriptors in most
cases this method allows queries to reach peers that store a significant number
of useful descriptors;

(iii) once a target descriptor has been reached, it is possible to locate other
services, needed in the same workflow, in the same network region. Indeed,
since services that are often co-used have similar keys, they have likely been
placed into very close peers by mobile agents.

The ant-inspired algorithm is briefly described in the following, but more
details can be found on [3]. Periodically each agent performs a small number
of hops among peers. When an agent arrives at a new peer, if it is carrying some
descriptors it must decide whether or not to drop these descriptors whereas, if
it is currently unloaded, it must decide whether or not to pick one or more
descriptors from the local host. When performing a pick operation, an agent
must also decide if the descriptor should be replicated or not. In the first case,
the descriptor is left on the current peer and the agent will carry a replica; in the
other case, the descriptor is taken from the peer and carried by the agent. This
way, agents are able to replicate, move and reorganize the descriptors.

In both cases, agent decisions are based on a similarity function, f , reported
in formula (1), which is based on the basic ant algorithm introduced in [4].
This function measures the average similarity of a given descriptor d with all
the descriptors d located in the local region R. In formula (1), Nd is the
overall number of descriptors maintained in the region R, while H(d, d̄) is the
Hamming distance between d and d. The parameter α is set to B/2, which is
half the value of the maximum Hamming distance between vectors having B

bits. The value of f assumes values ranging between -1 and 1, but negative
values are truncated to 0.

f(d̄, R) =
1

Nd

·
∑

dǫR

(1 −
H(d, d̄)

α
) (1)
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The probability of picking a descriptor stored in a peer must be inversely
proportional to the similarity function f , thus obtaining the effect of averting a
descriptor from co-located dissimilar descriptors. Conversely, the probability
of dropping a descriptor carried by an agent must be directly proportional to the
similarity function f , thus facilitating the accumulation of similar descriptors
in the same local region.

The pick and drop probability functions, Ppick and Pdrop, are defined in
formulas (2)a and (2)b. In this functions, the parameters kp and kd, whose
values are comprised between 0 and 1, can be tuned to modulate the degree of
similarity among descriptors.

(a) Ppick =

(

kp

kp + f

)

2

(b) Pdrop =

(

f

kd + f

)

2

(2)

After evaluating the pick or drop probability function (which function de-
pends whether the agent is carrying descriptors or not), the agent computes a
random number comprised between 0 and 1 and, if this number is lower than
the value of the corresponding function, it executes the pick or drop operation
for the descriptor under examination. The inverse and direct proportionality
with respect to the similarity function f assures that, as soon as the possible
initial equilibrium is broken (i.e., descriptors having different keys begin to be
accumulated in different Grid regions), the reorganization of descriptors is more
and more facilitated.

6. Conclusions

The paper proposes an innovative approach to the distributed and cooper-
ative composition of Grid (and not only) services based on: (1) AI planning
techniques, (2) service grouping and (3) overlays in large P2P networks. To
this end, we integrated a system for distributed service composition with (1) an
intelligent, ant-inspired search mechanism able to self-organize the location of
the services to facilitate discovery and (2) a partitioning technique that reduces
flooding. The end system is a composite mechanism that can scale to a large
number of services and peers. Future work will consolidate the mechanism in
a P2P infrastructure with the aim of comparing the results with those obtained
by simulations. Furthermore, new techniques will be exploited for identifying
service similarities for composition and their impacts on network partitioning.
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Abstract In grid computing where data processing takes place on many machines it is
essential to have possibility to see a whole execution workflow. It enables the
user to visually assess the computing-to-communication time ratio, frequency of
executed probes or library functions, delay and volume of communication, or
simply to observe how all nodes are actually working. In this paper we introduce
the Ocm2Prv tool that makes it possible to visually analyze the execution of par-
allel applications developed with MPI library. The tool couples the functionality
of two flexible environments - the OCM-G grid-enabled monitoring system and
performance visualization tool Paraver. Implications coming from other Grid
models, especially, GCM are also addressed.
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1. Introduction

Visualization as a graphic representation of abstract data relayed in text and
numbers makes it easy to observe certain behaviors [1]. In the context of
information systems, a visualizer is a computer program that presents data
according to a particular pattern. Tracing parallel applications in most cases
requires to instrument a program before it is executed (at compilation time).
Such an instrumentation modifies the program so that it provides a kind of
feedback of its execution. This can be information on functions it executes, time
of these executions, parameters; it can also be information on communication,
regarding its volume and participants.

There are many analysis tools that can visualize the performance of message-
passing applications. Our focus is on creating a tool that is targeted strictly at
visual analysis of grid applications which pose special requirements for per-
formance visualization. In our research, its source of monitoring data is meant
to be the OCM-G grid-enabled monitoring system [2] which collects infor-
mation about execution workflow, while for visualization purposes the Paraver
visualization tool [3] is chosen.

The purpose of the OCM-G coming from the CrossGrid project [4] is to
provide on-line information about a running grid application to application-
development tools, specifically, performance analysis tools like G-PM [5], which
is a tool designed for measurement and visualization purposes oriented towards
interactive applications. OCM-G enables the user to choose which applica-
tion performance aspect should be monitored by specifying standard or user-
defined metrics. It does not visualize the gathered information itself, so external
performance-oriented applications are needed for this purpose. One such an ap-
plication is the performance measurement tool G-PM which focuses on taking
precise measurements based on monitoring data supplied to it by OCM-G.

Paraver is a flexible performance visualization and analysis tool that can
be used to visualize any data provided in its special file format. Paraver was
developed to respond to the need to have a qualitative global perception of the
application behavior by visual inspection and to be able to focus on the detailed
quantitative analysis of performance problems. Paraver provides a large amount
of information useful to improve the decisions on whether and where to invest
the programming effort to optimize an application. Expressive power, flexibility
and the capability of efficiently handling large traces are key features addressed
in the design of Paraver. For user convenience, Paraver provides a configuration
files where the user sets preferences such as colors and labels to make its output
easy to understand.

The toolkit developed within the research under discussion, called Ocm2Prv,
is aimed to support visual analysis of applications monitored by OCM-G. Unlike
G-PM, Ocm2Prv is focused more on performance visualization than on the
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visualization of measurement results. The tool gathers data from OCM-G and
produces Paraver-compliant trace files which contain performance information
specified by the user. The visualization in Paraver comprises the whole picture
of an analyzed application execution.

We are focusing on the performance visualization of applications using MPI,
which is high-performance well-accepted platform, but programming on the
Grid is not limited to the use of MPI, it goes much further, and its evolution
towrads flexible, interoperable models and their implementations poses real
challenges for performance evaluation tools.

This paper provides a brief review of exiting performance visualization tools
that produce timelined displays of applications developed using MPI. This can
be found in Section 2 followed by Section 3 in which we focus on the main
requirements for our system. The next section describes the design of Ocm2Prv
that comes up from the requirements to, finally, in Section 5 present implemen-
tation work. A sample case is presented in Section 6. A discussion on going
beyond MPI in Section 7 is followed by concluding remarks and future plans.

2. Related work

Performance analysis of massively parallel systems is a very wide topic and
as many different parallel computing libraries exist as many different tools for
them have been developed to enable those analysis. One of such systems is
Vampir (Visual Analysis od MPI Resources) [6]. It is an on-line performance
analysis tool that visualizes four different types of information that the user
may want to obtain. It is compatible with both C and Fortran77 compilers and
provides tools that modify programs by injecting probes1 of each MPI routine.
Vampir has the capability to draw both dynamic and static representations of
communication of application. It also provides statistics of executions and time-
line views of nodes activities and global system views of nodes activity. Vampir
supports an animation mode that can help to locate performance bottlenecks,
and it provides flexible filter operations to reduce the amount of information
displayed. It is a compact and efficient system that has ability to display many
kinds of different information that enables performance analysis.

Another on-line MPI visualizer - G-PM [5] requires the analyzed program
to be compiled using an OCM-G compiler wrapper so that it is instrumented
to produce tracking information at run-time. G-PM enables the user to dynam-
ically choose the scope of measurements based on data to be extracted from
OCM-G to produce different types of diagrams including dynamic timelined

1some additional code designed specially to make possible inspection of the application process while it is
executed
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diagrams. The user is enabled to make use of standard metrics as well as of the
PMSL language [7] to specify user-defined metrics.

The MPITrace2 application is an instrumentation package that relies on dy-
namic interception mechanism. Like Vampir it does not require any changes or
source code additions and works on an executed program code. Being provided
with Paraver, MPITrace is completely integrated with it and both these tools
working together offer a large analysis potential, both qualitative and quantita-
tive. It produces a complete description of the application that can involve user
defined probes (to use these probes, source code and compilers are required).

The other application that can produce time-line output and is worth men-
tioning is Jumpshot [8]. This Java-written application does postmortem per-
formance analysis of information stored in SLOG3 files. It is easy to use when
we require to analyze a program quickly. It does not require any changes to
source code but if we want to generate an SLOG file we have to compile an
MPI application with a special option.

3. Requirements

Each tool mentioned in Section 2 has its advantages and disadvantages. For
example, Jumpshot is easy to use, it does not require changes to source code and
is portable, but SLOG files generated by MPE contain absolutely all information
that came from monitored application. If we imagine that such an application
runs for a long time on huge number of nodes executing many MPI functions,
so in this case a trace file can grow into enormous sizes and cause serious
problems. That is why both Jumpshot and MPITrace programs may be used
for big applications with care. G-PM is mainly a measurement-oriented tool,
while Vampir does not support user-defined metrics which are very important
for analyzing grid applications, especially, these with stress on interactiveness.

The toolkit under research is intended to couple the advantages of perfor-
mance tools presented above. It should enable changing the scope of perfor-
mance monitoring to avoid big trace files, it should allow the user to watch the
monitored application at any time after it has finished and, finally, we would like
to provide the user with a possibility to specify own metrics oriented towards
qualitative and quantitative performance analysis based on visualization.

4. Design

In order to develop a tool with the features stated in Section 3, we decided
to use two already existing and mature tools: OCM-G and Paraver. OCM-G

2for more information about MPITrace please refer to Paraver web site: http://www.cepba.upc.edu/paraver/
3special file format for Jumpshot. These files are generated using the MPE package for MPI and a special
converter
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works as an on-line monitoring system that provides execution data on-the-fly.
It gathers data which can be accessed via its OMIS-based API [9]. Paraver is
an off-line visualization tool, i.e. it requires data for the whole computation,
provided at once so it can visualize already completed executions only. A
system that couples these two performance tools should use the OMIS API and
supply to Paraver input files at its output.

The developed system should fulfill the following requirements:

1 connect to the OCM-G system

2 inform it that it wants to receive information from a set of nodes

3 inform it on what kind of information should be provided

4 collect this information and store it

5 transform the information obtained from OCM-G into a Paraver input file

The first two points can easily be achieved through the OCM-G API, while
for point 4 there should be a kind of intermediate file and the last point can
be realized in form of an application that translates this intermediate file into
a Paraver trace file. The selection of information mentioned in point 3 will
be enabled by a configuration file. This analysis implies the following imple-
mentation plan: The system should consist of two modules: one responsible
for gathering data and the second one for translating it into a proper format.
The data selected for visualization will be provided in a special configuration
file. The file will be edited by the user to specify what information he/she is
interested in. The designed system structure is shown in Fig.1.

Figure 1. Designed system structure
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5. Implementation work

Ocm2Prv prepares input files for Paraver, based on the data grabbed from
OCM-G system. To achieve that an application built of two cooperating mod-
ules was developed. Those modules are:

Data Grabber

Intermediate File Translator

Data Grabber is responsible for connecting to OCM-G Service Manager, reg-
istering probes4 and starting the monitored application. It is developed using
OCM-G libraries. Data Grabber prints a list of probes execution to Interme-
diate File which is an input for Intermediate File Translator. The module is
a C language console-like application. Its execution flow can be described as
follows:

1 User-specified list of functions he wants to monitor is read at application
startup

2 Information about all processes included in monitored application is gath-
ered from Service Manager

3 All selected5 MPI functions are registered to be monitored (to get infor-
mation about its execution start end end times)

4 User-defined probes are registered

Intermediate File Translator is an application developed for the conversion
of data provided in Intermediate File to Paraver input file. It is also responsible
for sorting provided events by the time of occurrence and its type as specified
in Paraver Traces Generation documentation. It produces a correctly formatted
Paraver input file. Intermediate File Translator is a Java-developed application
which translates Intermediate File using a parser and stack based engine which
associates information about co-operating application processes.

The overall system architecture is presented in Fig.2.
There are several configuration files that are required for running the system.

They are:

Ocm2Prv configuration file

OCM-G probes file

4any function that comes from MPI standard library or a user defined function whose execution times and
parameters can be gathered by the OCM-G system. User defined probes must be specified in separate files
for both the monitored application compilation and Ocm2Prv execution
5A probe measuring the result of MPI Comm Rank() is always registered because it is required to form the
output file properly.
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Figure 2. Developed system architecture

Paraver configuration file

Ocm2Prv configuration file contains a list of MPI functions which should be
monitored and presented on time-line as process states as well as a list of user
defined probes which will be interpreted as events. An example configuration
file is shown below:

MPI_Finalize

MPI_Init

probe_sleep 10

In the example MPI Finalize() and MPI Init() are functions whose ex-
ecutions will be marked on output time-line as time spans. It is possible to
show the execution times of the functions and threads which execute them.
probe sleep() is a user defined function. It will be shown on a time-line as
an event (marked as a colored flag) of type 106 and a value equal to the second
argument of the probe sleep() function execution (both value and type can
be read after clicking a proper flag). OCM-G probes file contains user defined
probes declarations (functions without bodies). An example:

void probe_send(int vt,int dest) {}

void probe_recv(int vt,int src) {}

void probe_sleep(int vt,int time) {}

The first argument of the probes is obligatory and should be incremented by
one each time any of the probes is executed. It is required for proper probes
executions watched by the OCM-G system7.

When executing Ocm2Prv, an Intermediate File is produced (it can be printed
on a screen on-the-fly). The file contains lines similar to those shown below:

p_1836_n_a0000c8 : 4,["end@MPI_Init",1189065074.68863201,0,1]:

6The type of an event can be any number. It is used to distinguish different events only.
7For more details on defining probes, please refer to OCM-G’s documentation which can be found at
http://grid.cyfronet.pl/ocmg/files/userguide.pdf
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p_1836_n_a0000cb : 4,["start@MPI_Comm_rank",1189065074.68888855,91,1]:
p_1836_n_a0000e4 : 4,["probe@probe_whoami",1189065074.68933868,0,0]:
p_1836_n_a0000fs : 4,["evnt@probe_sleep",1189065074.6894846,-1073918620,1]:

Generally each line can be described as follows:

<process_ID> : 4,["<end|start|probe|comm|evnt>@<probe_name>",

<execution_time>,<probe_argument>,<probe_type>]:

end and start represent any MPI function (as specified in a configuration file)
execution start and end times. In such a case, probe argument is not taken into
consideration and may be any value. probe is used with probe whoami only. It
is an artificial probe that should not be specified in configuration file. It is used to
relate process ID to MPI process number (returned by MPI Comm Rank()).
It is done by relating process ID to probe argument. evnt represents a
user-defined probe execution. comm represents communication between two
threads. probe argument is a second participant in such communication.
comm is generated by probe send() and probe recv() only.

6. Sample case

For illustrating the operation of the developed integrated tool we will con-
sider a fragment of monitoring session on a ping-pong-like application. Three
workers (threads 2,3, and 4) send some data to master (thread 1) which after
receiving data from all workers sends it back to them.

if (rank==0)

{

for(i=1;i<size;i++)

{

MPI_Recv(&msg,1,MPI_INT,MPI_ANY_SOURCE,tag,

MPI_COMM_WORLD,&status);

source_id = status.MPI_SOURCE;

probe_recv(pc++,source_id);

}

for(i=1;i<size;i++)

{

MPI_Send(&msg,1,MPI_INT,i,tag,MPI_COMM_WORLD);

probe_send(pc++,i);

}

}

else

{

probe_send(pc++,0);

MPI_Send(&msg,1,MPI_INT,0,tag,MPI_COMM_WORLD);

sleept=rand()%5;
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probe_sleep(pc++,sleept);

sleep(sleept);

MPI_Recv(&msg,1,MPI_INT,0,tag,MPI_COMM_WORLD,&status);

source_id = status.MPI_SOURCE;

probe_recv(pc++,source_id);

}

To compile the program we have to use the mpicc compiler wrapper provided
with OCM-G:

cg-ocmg-cc -probes probes.c mpicc <source_file.c>

-o <binary_file_name>

probes.c is a file containing probes definitions for OCM-G.
The next step is to start OCM-G monitor:

cg-ocmg-monitor

This returns a special identifier used to run both the monitored application and
Ocm2Prv tool. Now it is time to start our application:

mpirun -np 4 <binary_file_name> --ocmg-mainsm <mainsm>

--ocmg-appname <application_name>

and Ocm2Prv:

./ocm2prv --ocmg-mainsm <mainsm> <application_name>

<configuration file> <intermediate_file_name> [-v]

-v (verbose) option makes Ocm2Prv to print intermediate file contents to the
screen. After a while the program completes its execution (or if it does not we
can stop it by typing quit and pressing Enter) and we can view its trace file
named ocm2prv.out by opening it in Paraver. This is what we should see on
the screen:

Figure 3. Example output
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Colorful stripes on time lines (Fig.3 upper window) represent threads states.
The yellow ones represent executing the MPI Comm Size() function, pink ones
are for MPI Comm Rank() and green ones show MPI Send() function execu-
tion times. In the above example, other MPI functions were not specified in
OCM2Prv configuration file so they are not presented in Paraver. The small
green flags represent probes executions (probe *() functions in the source
code). Details on probes and their parameters can be seen after clicking on the
flags as well as communication events (Fig.3 lower window). Yellow lines with
yellow arrows show communication between two processes.

7. Performance visualization beyond MPI

From the user’s point of view, programming on the Grid is mainly seen
as using MPI and its derivatives: it is a popular, well known platform which
features high performance and acceptability. On the other side it lacks important
properties like flexibility and interoperability, featured by other platforms like
ProActive/GCM 8 [10]. One of the promising approaches to support Grid
oriented programming is coupling the message passing paradigm and GCM
[11]. Here important is to get a synergy of these two paradigms and not to loose
the high performance of message passing.

From the performance monitoring’s perspective, ProActive/GCM as well as
its support for MPI-like programming pose some interesting issues from a num-
ber of viewpoints. First of all, the user will definitely be interested in similar
performance data on their applications as when programming with pure MPI,
e.g. data on communication operations. It would be certain that monitoring
function calls or the execution of code fragments is also of interest; we need
to consider extensions to MPI, e.g. new communicators and related primitives.
The second point which is much more challenging is drilling down the per-
formance world when coming from MPI to ProActive. This would need the
performance assessment at the level of the wrapping code interfacing the native
MPI code. Going down we need to address the performance of protocols, e.g.
these exploited by ProActive to implement ”inter-system” message passing.
An interesting issue is to explore communication mechanisms between com-
ponents in a hierarchical model, especially those used to improve performance,
e.g. the shortcut mechanism.

The above issues imply enhancements to the performance tools discussed
in the paper. First of all, the event infrastructure exploited in OCM-G is to
be extended by new MPI-extensions events, ProActive/GCM events: intra-
component-, inter-component- and protocol-oriented events. This implies also
extensions to instrumentation techniques, fortunately, Java provides quite con-

8ProActive web page http://proactive.inria.fr/
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venient mechanisms. We experimented with them when working on a Java
applications-oriented sibling of OCM-G, J-OCM [12]. Another issue is to ex-
tend or not the current OCM-G’s monitoring infrastructure, this needs special
exploration. It is quite probable that a decentralized architecture can be more
suitable in case of ProActive. From the performance visualization viewpoint,
in addition to the current time-lined and profiling displays provided by Paraver
there will be some other displays needed, most probably these oriented towards
animation views to illustrate the states of the objects involved. The dynamics
of Grid applications, especially when using ProActive will also necessitate to
overcome the constraint of Paraver to off-line visualization towards semi- or
fully-online visualization. And last but not least: using the PMSL language
for programming user-defined metrics, which is supported by OCM-G, would
make exploring the application’s performance meaningful in terms of the appli-
cation’s semantics, which implies the necessity to introduce a mechanism for
mapping user-defined metrics onto Paraver’s display definitions.

8. Conclusions

Our goal was to develop a tool that could become an alternative to the exist-
ing performance visualization tools via coupling the functionality of a flexible,
low-intrusive monitoring system, OCM-G, and a powerful performance visu-
alization tool, Paraver. The integrated toolkit produces trace files for MPI
applications enabling their further visual analysis. Ocm2Prv focuses on the
presentation of MPI function timings and types, but can also visualize commu-
nication between processes and execution of user defined functions (probes).
It enables filtering information presented on time-line thus reducing the size of
trace files. In the simplest scenario, no changes to application source code are
required to use Ocm2Prv and Paraver environment.

Our further research will concentrate on adapting the PMSL language to
map user-defined metrics onto OCM-G operation for visualization purposes
and, reversely, onto Paraver diagrams. We will continue our on-going research
on extending the capabilities of OCM-G and Paraver towards ProActive/GCM.

Acknowledgments

We are grateful to dr. Judit Gimenez (Universita Politècnica de Catalunya)
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in a way that is neither overly optimistic nor overly pessimistic. Risk profiles
are analysed using angel and daemon games. A risk profile can be assigned a
valuation through an analysis of the structure of its associated Nash equilibria.
Some structural properties of valuation functions, that show their validity as a
measure for risk, are given. Two main cases are considered, the assessment of
Orc expressions and the arrangement of a meeting using reputations.
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1. Introduction

In this paper a means of assessing the outcome of executing a grid orchestra-
tion in an untrusted environment is proposed. A grid orchestration is modelled
by an Orc expression [8] which interacts with services on a grid network. A ser-
vice provided by a site may be unreliable because of site overuse, site failure or
network congestion. In this paper game theory is used to analyse the effects of
a bounded number of service (site) failures during an orchestration evaluation.
Two examples are used to motivate the use of game theory for orchestration
assessment:

Example 1 Multiple job:

Consider a physicist who wishes to execute a program on a large number of data sets. The jobs

will be executed in parallel on a computational grid. In order to draw conclusions the physicist

requires that only a certain percentage of jobs return results. Suppose that the set of parallel

jobs are executed on sites S1, .., Sn and that each site has an associated reliability rating. What

is the probability that the physicist will receive sufficient experimental results? In this paper

the problem of estimating the number of values published by an Orc expression evaluation is

presented as a model of this problem. 2

Example 2 Minimum Computing requirements:

Consider a user who wishes to execute a distributed program with a very high computational

workload on a grid. The user wishes to find a set of sites that will participate (simultaneously)

in the execution of the job. The orchestration contains a management program which first

interrogates a number of sites, S1, . . . , Sn, to determine which are prepared to engage in the

computation. The job is scheduled among the sites that indicate that they are available to

participate.

Suppose that site Si has associated (i) a reputation, Ri, of being available to carry out a job

and (ii) an amount of work, Wi, that can be computed in a time unit. If the user has a minimum

requirement for the amount of work that can be carried out in a time unit, should the job proceed

or not? There are a number of variants of this scenario: for example, (i) a user requires a

minimum number of services to be available concurrently in order to implement dynamically

a fork and join operation or (ii) a user has a maximum cost bound. In this paper a meeting

scheduling problem is presented as an exemplar of problems of this type. 2

Two model problems which represent multiple job and minimum computing

requirements are presented and analysed by means of risk profiles and games.
The set of sites participating in the evaluation of an orchestration is partitioned
into sets A and D called angels and daemons, respectively. Each of the sets
A and D is associated with a number of site failures, denoted by fA and fD,
respectively. In an angel-daemon game the fA sites in A which fail are chosen
so that the damage to the application is minimized. In contrast, the fD sites in
D which fail are chosen so as to maximise damage to the application. When
angels and daemons act simultaneously a competitive situation arises that can
be represented as a game. We consider two different cases: games which are
zero-sum games (multiple job) and games which are not (minimum computing

requirements).
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The study of systems under failure with games is not new [3, 9]; however,
assessment of orchestrations where control is exercised by a single user is
different from the analysis of distributed systems under failure1.

In §2 an introduction to the orchestration language Orc [8] is given. A means
of determining the number of outputs published by an expression evaluation
is given in §3. The number of outputs published by an expression evaluation
provides one means of assigning a valuation to a game. A formal definition of
risk profile is given in §4. Some properties of risk profiles are given in §5. In §6
an assessment of a meeting scheduling problem using risk profiles is presented.

2. Orc

An orchestration is a user-defined program that utilises services on a grid. In
Orc [8] services are modelled by sites which have some predefined semantics.
Typical examples of services are: an eigensolver, a search engine or a database.
A site accepts an argument and publishes a result value2. For example, a call
to a search engine, find(s), may publish the set of sites which currently offer
service s. A site is silent if it does not publish a result. Site calls may induce
side effects. A site call can publish at most one response. Although a site call
may have a well-defined result it may be the case that a call to the site, in an
untrusted environment, fails (silence). Orc contains a number of inbuilt sites:
0 is always silent while 1(x) always publishes x. if(b) publishes a signal if
b is true and remains silent otherwise. An orchestration which composes a
number of service calls into a complex computation can be represented by an
Orc expression. An orchestrator may utilise any service that is available on
the grid. The simplest kind of Orc expression is a service (site) call. Two Orc
expressions P and Q can be combined using the following operators:

Sequence P > x > Q(x): For each output, x, published by P

an instance Q(x) is executed. If P publishes the stream of values,
v1, v2, . . . vn, then P > x > Q(x) publishes some interleaving of the set
{Q(v1), Q(v2), . . . , Q(vn)}. When the value of x is not needed we note
P ≫ Q.

Symmetric Parallelism P | Q: Orchestration P | Q publishes some

interleaving of the values published by P and Q.

Asymmetric parallelism P where x :∈ Q: In this case P and Q are
evaluated in parallel. P may become blocked by a dependency on x. The

1The analysis of risk is well studied in microeconomics (see [7], chapter 6). The study of grid and web
applications under user’s risk perception is new at the best of our knowledge. In particular the notion of risk
profile introduced here seems to be new.
2The words “publishes”,“returns” and “outputs” are used interchangeably. The terms “site” and “service”
are also used interchangeably.
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first result published by Q is bound to x, the remainder of Q’s evaluation
is terminated and evaluation of the blocked residue of P is resumed.

Example 3 Consider the expression s > x > (P |Q) where s is a site. However, if s fails

to publish then this will result in a catastrophic failure in the evaluation of s > x > (P |Q). If

site t has the same functionality as s then the orchestration (P |Q) where x ∈ (t|s) will have

the same functionality as s > x > (P |Q) while being more robust.

A services implementing a total function is called non-blocking ass(v1, . . . , vn)
must publish a result for all well-defined arguments v1, . . . , vn; otherwise s is
called potentially blocking. For example, site 1 is non-blocking while site if is
potentially blocking. Given E(z), depending on an input variable z, we denote
by E(⊥) the behavior of this expression when the value of z is undefined. This
is equivalent to replace by 0 all subexpressions having a dependency on z. We
keep E(z) to represent the evaluation when z is defined.

3. The number of values published by an orchestration

Consider the example Multiple job executing in an environment where some
sites are broken. The evaluation may still have value to the orchestrator provided
that a certain minimum number of results are published. Given a complex
orchestrationE it is unrealistic to assume that there will be no site failures during
execution. We use α(E) be the set of sites that are referenced in orchestration E

and α+(E) = α(E)\{0}. Let F ⊆ α+(E) denote a set of sites that fail during
an evaluation of E. The behaviour of the evaluation of E in this environment
is given by replacing all occurrences of s, s ∈ F , by 0. Let ϕF (E) denote this
expression. The following assumptions are made in [4].

Reliability assumption. Sites are unreliable and can fail. When a site fails it remains silent;
otherwise it publishes a result.

Value assumption. The evaluation of an orchestration has value even if some sites fail. For a
particular failure set F the usefulness of the evaluation of ϕF (E) is measured by v(ϕF (E)),
the value or benefit of the orchestration ϕF (E). A valuation function v should be such that:

1 the range of v should be non-negative R

2 the value of v must be 0 when all sites fail

3 v(ϕF (E)) ≥ v(ϕF′(E)) when F ⊆ F ′ ⊆ α(E)

4 v(E) and vF (E) have a low computational complexity.

We are interested in value functions v such that v(E) and vF (E) is easy
to compute. A rough measure v(E) is the number of outputs published by E

denoted as out(E).

Lemma 4 The number of outputs, out, published by an expression meets the

requirements needed for a value function. Moreover, given a non-blocking well

formed expression E and F ⊆ α+(E), the values out(E) and out(ϕF (F )) can

be computed in polynomial time with respect to the length of the expression E.
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Proof. The proof of the validity is straightforward. The computation bounds
follow from standard techniques, taking into account the following considera-
tions. The number of outputs of a single site call verifies out(0) = 0, out(1) = 1
and out(s(v1, . . . , vk)) is 1 if all the parameters are defined, 0 otherwise. For
two non-blocking well formed expression E1, E2 we have out(E1|E2) =
out(E1) + out(E2), out(E1 > z > E2(z)) = out(E1) ∗ out(E2(z)) and
out(E1(z) where z :∈ E2) is equal to out(E1(z)) if out(E2) > 0 otherwise
is equal to out(E1(⊥)). 2

4. Risk profiles, angel-daemon games and assessments

Given an expression E we assume a partition of α+(E) into two setsA andD.
Some ways of defining site partitions are given in [4]. An analysis is conducted
where sites in A perform as well as possible while sites in D maximise damage

to the application3 . This results in an intermediate analysis lying between the
best and worst cases. Let fA ≤ #A angelic sites and fD ≤ #D of daemonic
sites fail during evaluation of E. The risk profile (A, fA, D, fD) gives a
perception of risk from an assessor’s point of view.

Definition 5 Given and Orc expression E, the tupleR = 〈E,A,D, fA, fD〉
is a risk profile for E where A ∪ D = α+(E), A ∩ D = ∅, fA ≤ #A and

fD ≤ #D.

Given a risk profile R = 〈E,A,D, fA, fD〉 a strategic situation occurs when E

suffers the effects of two players, A andD, with opposing behaviours. Consider
the following zero sum game:

Definition 6 ([4]) The zero-sum angel-daemon game associated to risk

profile R is the game Γ(R) = 〈{A,D}, AA, AD, uA, uD〉 with two players, A
the angel and D the daemon. The players have the following sets of actions,

AA = {a ⊆ A | #a = fA} and AD = {d ⊆ A | #d = fD}. As for an

strategy profile s = (a, d) the set of sites to fail associated with s is thus a∪ d,

the utilities are uA(s) = out(ϕa∪d(E)) and uD(s) = −uA(s).

A pure saddle point is a strategy profile s∗ = (a∗, d∗) such that

uA(a∗, d∗) = max
a′∈AA

min
d′∈AD

uA(a′, d′) = min
a′∈AA

max
d′∈AD

uA(a′, d′)

3An important question is how this happen in practice. Given an orchestration E, a human or mechanical
“user”, has a belief about the behaviour of sites in α+(E). This belief can be based on past experiences,
common knowledge or any other information source. This should allow the user to partition the sites roughly
into “good´´ and “bad”. If there is no experience, the user can assume that all sites all are good (optimistic
view) or all are bad (pessimistic view). Once the partition is found, the user has to consider failures. He can
assume only that “all bad sites will fail for sure” or, alternatively, that “some good and some bad sites will
fail”. Assuming the latter case, the user has to address the following question “which good sites will fail”
and similarly for daemons. Assuming that “good sites” fail damaging as little as possible seems a reasonable
hypothesis. This approach is formalized with risk profiles and angel-daemon games.
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SEQ of PAR , (P | Q) ≫ (R | S) , PAR of SEQ , (P ≫ Q) | (R ≫ S)

R1 = 〈SEQ of PAR, {P, Q}, {R, S}, 1, 1〉,R2 = 〈SEQ of PAR, {P, R}, {Q, S}, 1, 1〉

R3 = 〈PAR of SEQ , {P, Q}, {R, S}, 1, 1〉,R4 = 〈PAR of SEQ , {P, R}, {Q, S}, 1, 1〉

A

D
R S

P 1 1
Q 1 1

ν(R1) = 1

A

D
Q S

P 0 1
R 1 0

ν(R2) = 1/2

A

D
R S

P 0 0
Q 0 0

ν(R3) = 0

A

D
Q S

P 1 0
R 0 1

ν(R4) = 1/2

Figure 1. Angel-daemon games for SEQ of PAR and PAR of SEQ in different environ-
ments. The utility uA is given by the number of outputs of the Orc expression. Games Γ(R1)
and Γ(R3) have pure saddle points. Games Γ(R2) and Γ(R4) have mixed saddle points.

A pure saddle point does not necessarily exist (see the second game in Figure
1). A mixed strategy for A is a probability distribution α : AA → [0, 1] and
similarly for D. Let ∆A and ∆D be the set of mixed strategies for A and
D. A mixed strategy profile is a tuple (α, β) and the expected utility for A is
uA(α, β) =

∑

(a,d)∈AA×AD
α(a)β(d)uA(a, b). It is well known [6] that there

always exists a mixed saddle point (α∗, β∗) satisfying

uA(α∗, β∗) = max
α′∈∆A

min
β′∈∆D

uA(α′, β′) = min
β′∈∆D

max
α,∈∆A

uA(α′, β′)

Moreover, all the existing saddle points give the same utility; therefore such a
value is called the value of the game Γ(R).

Definition 7 Given a risk profile R = 〈E,A,D, fA, fD〉, the assessment
under R, denoted by ν(R), is the value of the zero-sum game Γ(R).

Example 8 Consider two classical parallel workflow patterns (see [1]), SEQ of PAR

and PAR of SEQ . PAR represents parallel execution (e.g. a farm) while SEQ is sequential

composition. In Figure 1 the workflows SEQ of PAR and PAR of SEQ are analysed using

angel-daemon games using utility function out. A “sequential composition of parallel processes”

(SEQ of PAR) is denoted by , (P | Q) ≫ (R | S) while a “parallel composition of sequential

expressions” (PAR of SEQ) is denoted by , (P ≫ Q) | (R ≫ S).

In Example 8 there are simple cases without pure saddle points. Pure saddle
points arise in the following example:

Example 9 A farm (a kind of multiple job) is an embarrassingly parallel computation

defined as FARM n , (S1 | · · · | Sn). For any R = 〈FARM n,A,D, fA, fD〉 it is easy to

prove ν(R) = n− fA − fD . An angel failure has the same effect as a daemon failure (because

of the simple structure of FARM n). A sequential composition of farms [2] can be analysed
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using angel-daemon games. The sequential composition of k > 0 farms is defined for k = 1
as SEQ of FARM

n,1 , FARM n and for k > 1 as SEQ of FARM
n,k

, FARM n ≫
SEQ of FARM

n,k−1. For the profile RSEQ = 〈SEQ of FARM
n,k

,A,D, fA, fD〉 we have

ν(RSEQ) = (n − fA − fD)k. 2

Under restricted circumstances, pure equilibria exist:

Lemma 10 Let E and F be two expressions, then we have

ν(〈E | F,α+(E), α+(F ), fA, fD〉)

= max
a∈AA

out(ϕa(E)) + min
d∈AD

out(ϕd(F ))

ν〈E ≫ F,α+(E), α+(F ), fA, fD〉)

= max
a∈AA

out(ϕa(E)) ∗ min
d∈AD

out(ϕd(F ))

ν(〈E,A,D, fA, 0〉) = max
a∈AA

out(ϕa(E))

ν(〈E,A,D, 0, fD〉) = min
d∈AD

out(ϕa(E))

Therefore, in all the four cases the associated game has a pure saddle point.

Proof sketch. Given the orchestration E | F it is easy to see that uA(a, d) =
out(ϕa(E)) + out(ϕd(F )). Observe that for E ≫ F we have that uA(a, d) =
out(ϕa(E)) ∗ out(ϕd(F )). In the case that fD = 0 we have that uA(a, ∅) =
out(ϕa(E)) and when fA = 0 we have that uD(∅, d) = out(ϕa(E)). There-
fore, in all the four cases, the extreme values are achievable by pure strategies
and the corresponding games have a pure saddle point. 2

5. Properties of risk profiles and assessments

We study basic properties of risk profiles in relation to the assessment of
orchestrations. The first establishes a basic monotonicity property. Assume
that A and D remain unchanged.

Lemma 11 Given a risk profile R = 〈E,A,D, fA, fD〉, consider the risk

profiles R′ = 〈E,A,D, f ′

A
, fD〉 and R′′ = 〈E,A,D, fA, f ′

D
〉. Then, when

f ′

A
≤ fA we have that ν(R) ≤ ν(R′) and when f ′

D
≥ fD, ν(R) ≥ ν(R′′).

Proof sketch. Consider the profile R′, note f ′

A
= p′, fA = p and δ = p − p′.

Given a set a ⊆ Awith |a| = p and a set a′ ⊆ a with |a′| = p′, for any d ⊆ Dwe
have that out(ϕa∪d(E)) ≥ out(ϕa′∪d(E)), therefore uA(a, d) ≤ uA′(a′, d).
The previous inequality can be extended to dual pairs of mixed strategies α and
α′ in which for any a there is a′ ⊂ a for which α(a) = α′(a′). Finally, to prove
that ν(R) ≤ ν(R′) consider, for a dual pair α and α′, the strategies β∗ and β̂

such that uA(α, β∗) = minβ uA(α, β) and uA(α′, β̂) = minβ uA′(α′, β), then
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we can show that uA(α, β∗) ≤ uA′(α′, β̂). Now considering the strategies α∗

and α̂ with uA(α∗, β∗) = maxα uA(α, β∗) and uA′(α̂, β̂) = maxα uA′(α, β∗),
then we can show that ν(R) = uA(α∗, β∗) and that ν(R′) = uA′(α̂, β̂),
therefore ν(R) ≤ ν(R′). 2

One particular case is when the angel or the daemon is not allowed to act.
For a given R = 〈E,A,D, p, q〉, we consider AngCut(R) = 〈E,A,D, p, 0〉
and DaeCut(R) = 〈E,A,D, 0, q〉. The previous result shows that the values
verify ν(DaeCut(R)) ≤ ν(R) ≤ ν(AngCut(R)).

It can be difficult to find more sophisticated properties as we see in the following
example which shows that intuition is not necessarily a good guide.

Example 12 Given a risk profile we could try to trade-off properties such as, “increasing

the failures of A and decreasing the failures of D so as to give a less risky situation”. Unfortu-

nately, this is false. Given E =
`

(P | Q) ≫ T ) | R
´

, profile R = 〈E, {T, R}, {P, Q}, 1, 1〉
gives us ν(Γ(R)) = 1, trading a daemonic failure for an angelic one makes the situation worse

because now the profile is R′ = 〈E, {T, R}, {P, Q}, 2, 0〉 and ν(R′) = 0.

There are more extreme risk profiles.

Theorem 13 Given a risk profile R = 〈E,A,D, p, q〉, consider the profiles

Ang(R) = 〈E,α+(E), ∅, p + q, 0〉, Dae(R) = 〈E, ∅, α+(E), 0, p + q〉

then we have ν(Dae(R)) ≤ ν(R)) ≤ ν(Ang(R)).

Proof sketch. Leta∗ ⊆ α+(E)be a set giving the maximal value for out(ϕd(E))
and let d∗ ⊆ α+(E) be a set giving the minimal value for out(ϕd(E)). Taking
into account the definirion of the two games we have that (a∗, ∅) is a saddle
point of Ang(R) and that (∅, d∗) is a saddle point of Dae(R). Furthermore, for
any (a, d) ∈ AA ×AD it holds that out(ϕd∗(E)) ≤ uA(a, d) ≤ out(ϕa∗(E)).
Therefore, ν(Dae(R)) ≤ ν(R) ≤ ν(Ang(R)). 2

The Ang(R) profile adopts the viewpoint “the world is as good as possible
even when failures cannot be avoided”. In contrast, the Dae(R) profile is
a conceptualization of “the world is as bad as possible and failures always
happen to maximize dammage”. Given a risk profile R, the profiles Ang(R)
and Dae(R) act as a basic bounds.

6. Arranging a Meeting using Reputation

The following is an example of internet computing where sites are interpreted
as interfaces between the members of a community. Consider a university rector
who wishes to consult his staff before making a decision. He sends an email
to professors in his university to arrange a meeting. Some professors answer;
others do not. Assume that professors have a reputation metric. For example,
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Professor Reputation

Rector 0.3
Ex-Rector 0.3
Head of Dept. 0.2
Professor 0.1
Instructor 0.1

Total 1.0

r(a, d) E H P rA(a)

R 0.13. . . 0.16. . . 0.2 0.1
I 0.2 0.23. . . 0.26. . . 0.3

rD(d) 0.15 0.2 0.25

Figure 2. The first table gives the reputation and the second reflects the reputation values asso-
ciated to the strategies in the game associated to the risk profile < P , {R, I}, {E, H,P}, 1, 1 >.

reputation could be based on position. After a time ∆T the rector has to decide
if the meeting will take place or not. The decision will be based on the average

reputation of the professors replying. The following Orc expression Meeting

is based on MeetingMonitor (see section 7.3 in [8]). It is assumed that a call
to a professor’s site p, with a message m, is denoted by p(m). The call p(m)
either returns the reputation of the professor or is silent (this is represented as
p(m) > r).

The expression AskFor (L,m, t,∆T ) gives the number and the total reputa-
tion of the answers received. In the expressionL = (h, t) is the list of professors,
m is the message, t the suggested meeting time, and ∆T the maximum waiting
time for responses. AskFor publishes a pair (count, total reputation). The
average reputation is r = reputation/count . As the reputation ri of any pro-
fessor i satisfies 0 < r − i < 1, it holds that 0 < r < 1. Following [5, 11]
we define a lower 0 ≤ ω ≤ 1 threshold in order to classify the relevance of
data. The meeting will take place when the reputation is good enough: ω ≤ r;
otherwise the meeting is cancelled. The final expression is ProceedOrCancel ,
where LP is the email list of all the professors in the university.

AskFor([], m, t, ∆T ) , let(0, 0)

AskFor(H : T, m, t, ∆T ) , let(count, total reputation)

where

count :∈ add(u.count, v.count)

total reputation :∈ add(u.reputation, v.reputation)

u :∈ {h(m) > r > let(1, r) | Rtimer(∆T ) ≫ let(0, 0)}

v :∈ AskFor(T, m, t, ∆T )

ProceedOrCancel (c, total r, ω) ,

average(c, total r) > r >

(if(ω ≤ r) ≫ let(“do”)) | if(ω > r) ≫ let(“cancel”))

Meeting(P , ω, t, ∆T ) ,

AskFor(LP ,m, t ,∆T ) > (c, r) > ProceedOrCancel(c, r , ω)
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Let us consider how to assess the meeting. To do this consider a strongly
divided university with a set of professors P such that P = A ∪D. As before
the easy way to analyse this situation is introducing a risk profile.

Definition 14 For the meeting problem a risk profile contains information

about the reputation and the threshold, R = 〈P, (ri)i∈N , ω,A,D, fA, fD〉.

This profile contains elements in common with that given in Definition 5 just
replacing α+(E) by P. Let a = {a1, . . . , ap} be the failing sites (do not
respond) for A and d = {d1, . . . , dq} the failing sites for D and, as before, the
strategy profile is s = (a, d). The set of sites answering the email (successful
sites) are Sa = A\a and Sd = D\d. Given a strategy profile (a, d), the average
reputations of A and D and the average reputation of the strategy profile are
defined as follows

rA(a) =

∑

s∈Sa
rs

#Sa

, rD(d) =

∑

s∈Sd
rs

#Sd

, r(a, d) =

∑

s∈Sa∪Sd
rs

#(Sa ∪ Sd)

The angel A is happy when the meeting takes place and unhappy otherwise.
The daemon D behaves in the opposite direction.

uA(a, d) =

{

+rA(a) if ω ≤ r(a, d)

−rA(a) otherwise
uD(a, d) =

{

−rD(d) if ω ≤ r(a, d)

+rD(d) otherwise

Based on these utilities the Angel-Daemon game is adapted to this situation
and we obtain the strategic game Γ(R) = 〈A,D, uA, uD〉 called the Meeting
game. Note that the Meeting game is not a zero-sum game.

Example 15 We have a university with N = 5 professors P = {R, E,H, P, I} parti-

tioned as A = {R, I}, D = {E, H,P} and fA = fD = 1. The Figure 3 give us several

examples of the meeting game for diferent values of w. Observe that for w = 0.1, 0.18, and 0.3
the meeting game has a pure Nash equilibrium, but that when w = 0.25 the game does not have

a Nash equilibrium.

A

D

E H P

R 0.1, −0.15 0.1, −0.2 0.1, −0.25

I 0.3, −0.15 0.3, −0.2 0.3, −0.25

w = 0.1

A

D

E H P

R −0.1, 0.15 −0.1, 0.2 0.1, −0.25

I 0.3, −0.15 0.3, −0.2 0.3, −0.25

w = 0.18

A

D

E H P

R −0.1, 0.15 −0.1, 0.2 −0.1, 0.25

I −0.3, 0.15 −0.3, 0.2 0.3, −0.25

w = 0.25

A

D

E H P

R −0.1, 0.15 −0.1, 0.2 −0.1, 0.25

I −0.3, 0.15 −0.3, 0.2 −0.3, 0.25

w = 0.3

Figure 3. Some examples of the meeting game for the case in Example 15 for w ∈
{0.1, 0.18, 0.25, 0.3}.
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Theorem 16 GivenR = 〈N , (ri)i∈N , ω,A,D, fA, fD〉. Let A = AA×AD

and define δ = min (a,d)∈A r(a, d), µ = max(a,d)∈A r(a, d), δA = mina∈AA
rA(a)

and finally µA = maxa∈AA
rA(a)

Γ(R) has a Nash equilibrium iff either (1) ∃a ∈ AA with rA(a) = µA

such that ∀d ∈ AD r(a, d) ≥ ω, or (2) ∃d ∈ AD with rD(d) = µD such

that ∀a ∈ AA r(a, d) < ω.

If ω ≤ δ or ω > µ, the game ΓP(R) has a Nash equilibrium.

Furthermore, in any Nash equilibrium (a, d) of the game (if one exists), either

the meeting holds and uA(a, d) = µA and uD(a, d) = −δD or the meeting is

cancelled and uA(a, d) = −δA and uD(a, d) = µD.

Proof Sketch. Observe that function r has some monotonicity properties. In
the case that r(a, d) ≥ ω, for any a′ ∈ AA with rA(a′) ≥ rA(a), we have that
r(a′, d) ≥ ω. Let (a, d) be a Nash equilibrium in which the meeting holds, that
is r(a, d) ≥ ω. This means that rA(a1) ≥ 0 and rD(d1) ≤ 0. Therefore, taking
into account the monotonicity, we have that rA(a1) = µA and rD(d1) = δD,
otherwise a1 will not be a best response to d1 and viceversa. But in such a case
condition (1) holds. In the case that condition (1) holds, we have that a is the
best response to any action of the daemon d′. Furthermore, the best response
to a happens in the daemon strategy with minimum rD value. Therefore the
game has a Nash equilibrium in which the meeting holds. Symmetrically if
r(a, d) < ω, for any d′ ∈ AD with rD(d′) ≤ rD(d), we have that r(a, d′) < ω.
Reversing the arguments we get the equivalence with the existence of a Nash
equilibrium in which the meeting does not hold and condition (2). Observe that
ω ≤ δ implies condition (1) and ω > µ implies condition (2). 2

7. Conclusions

We have addressed the question of the management of risk in orchestrations.
We captured an ex-ante vision of the risk in a risk profile and applied this
idea to two different types of orchestrations. Several open questions remain.
Perhaps it is possible to define a taxonomy or risk profiles for large families
of orchestrations. It also seems possible to define the behaviour in relation
to risk attitudes. The behaviour of an orchestration under failures can also be
studied using a probabilistic approach [13]. The relationship between the two
approaches merits investigation.
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Abstract

In a few years, access to the content of multimedia data will be a problem
of phenomenal proportions, as digital cameras may produce high data rates, and
multimedia archives steadily run into petabytes of storage space. As a con-
sequence, in the field of large-scale distributed Multimedia Content Analysis
(MMCA) there is an urgent need for the coordinated handling of vast amounts
of distributed and replicated data collections.

Any sustainable solution to the management problem of distributed (mul-
timedia) data in Grids has to follow a layered approach, starting from a new
generation of network controllers and, through a novel middleware, up to an
interface to applications.

In this paper we report on our first steps of our bigger plan in this direction.
Specifically, we introduce a new transport protocol layer (called HI-TP), which
is capable of taking advantage of the storage capabilities of network devices,
such as routers. The paper presents the protocol definition, and discusses initial
performance results for basic transmission functionality. Results indicate that
our protocol is capable of achieving higher throughput than traditional transport
protocols, even in networks with significant latency.

Keywords: Multimedia, Grid, Network, Storage, Coupling
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1. Introduction

Multimedia data is rapidly gaining importance along with recent deploy-
ment of publicly accessible digital television archives, surveillance cameras in
public locations, and automatic comparison of forensic video evidence. Conse-
quently, for emerging problems in multimedia content analysis (MMCA), Grid
architectures are rapidly becoming indispensable.

Any sustainable solution to the management problem of distributed (mul-
timedia) data in Grids has to follow a layered approach, starting from a new
generation of network controllers and, through a novel middleware, up to an in-
terface to applications. To achieve the goals of scalability, security, versatility,
location independence, and delivering a Quality-of-Experience driven perfor-
mance over current network infrastructures, we are developing a solution where
’intelligence’ in a globally scalable system is put in the middleware, where the
lower level deals with local problems only, while all other properties are taken
care of at the upper layers.

Today, network devices such as routers have transparent storage capabilities:
when IP packets reach a router, they are stored in a queue, waiting to be pro-
cessed. An active network caching scheme can take advantage of such storage,
and buffer streams to be released only at a later stage. To achieve this, the net-
work nodes should expose in some way the underlying storage, thus separating
the basic forwarding functions from higher control capabilities. Furthermore,
a middleware layer should provide interfaces to these advanced data manage-
ment properties, to be available to Grid services and applications. Research and
development in this direction, including the design and standardization of new
protocols, is one of the core businesses of the Hitachi Sophia Antipolis lab.

To transparently make available the newly developed protocols to application
developers, an integration effort is taking place with the advanced Grid program-
ming tools developed by the Computer Systems group at Vrije Universiteit: (1)
Ibis Grid communication system and environment [17] and (2) Java version of
the Grid Application Toolkit (GAT) [1]. The group at the Vrije Universiteit
also is engaged in a strong collaboration with MultimediaN, a Dutch national
consortium integrating over 120 researchers from leading Dutch institutes in
the field of multimedia technology [15]. In this collaboration, Ibis and Java-
GAT are currently being integrated with a user transparent cluster programming
framework for multimedia content analysis, called Parallel-Horus [10–12]. The
work described in this paper complements these ongoing efforts, and will benefit
from the availability of many existing state-of-the-art multimedia applications,
and large-scale multimedia data sets.

In this paper we report on our first steps towards a solution for the coordinated
management of vast amounts of multimedia data, for real-time and off-line
content analysis.



Coordinated Data Management for DMMCA 135

This paper is organized as follows. Section 2 presents the rationale of active
network caching, and signals the need for a new transport protocol. In Section 3
we present an overview of state-of-the-art transport protocols, and indicate
problems and drawbacks with respect to our purposes. Section 4 presents a
new transport protocol, which is capable of taking advantage of the storage
capabilities of network devices, such as routers referred to as HI-TP. Section 5
describes the testbed applied in our measurements, and discusses our initial
performance results for basic transmission functionality. In Section 6 we give
a brief overview of the set of tools in which our newly developed transport
protocol will be integrated. Concluding remarks are given in Section 7.

2. Logistical Networking: Active Network Caching

As stated in the introduction, network devices such as routers have transparent
storage capabilities: when IP packets reach a router, they are stored in a queue,
waiting to be processed. An active, intelligent network caching scheme can
take advantage of such storage, and buffer streams to be released only at a
later stage. To achieve this, the network nodes should expose in some way the
underlying storage, thus separating the basic forwarding functions from higher
control capabilities.

Our work in this direction is a natural follow-up to the Internet Backplane
Protocol (IBP), which aims to exploit a unified view of communication that
creates a strong synergy between storage and networking [7]. IBP allows data
to be stored at one location while en route from sender to receiver, adding
the ability to control data movement temporally as well as spatially. This
generalized notion of data movement is called logistical networking, drawing
an analogy with systems of warehouses and distribution channels. Logistical
networking can improve application performance by allowing files to be staged
near where they will be used, data to be collected near their source, or content
to be replaced close to its users.

Our current work, as part of the Intelligent Network Caching Architecture
(INCA [2]), extends these ideas. In particular, we believe that any envisaged
solution to logistical networking must be comprehensive, and must follow a lay-
ered approach, starting from a new generation of network equipment controllers
and, through a novel middleware, up to the interface to applications.

The INCA system aims at exposing and expanding the storage capabilities
of network equipment, such as routers. In particular, our goal is to implement
an active network caching scheme that can take advantage of network storage,
to buffer streams that are to be released only at a later stage. As an example, the
INCA architecture aims to support files which can be replicated and scattered
over the network, or at least in a defined network domain. To achieve this,
we need to rethink the current architecture of network nodes, allowing them
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to expose their underlying storage. In other words, the network equipment
should move towards a modular, or distributed, architecture, separating the
basic forwarding functions from higher control capabilities.

This paper focuses on the lowest layer of transmission protocols, in particular
at the IP level. At this level we need new mechanisms and protocols to make
data storage available inside the network boundaries. This particular storage
should have very basic properties and very simple failure modes, in order to
allow for maximum scalability of the framework. The middleware above, which
is not the focus of this paper, would act as the transport layer in networking;
it would provide all those properties that allow the framework to be useful to
services and applications.

The following section gives a brief overview of state-of-the-art network trans-
mission protocols, and indicates problems and drawbacks with respect to our
purpose of efficient and reliable network caching. In the subsequent section we
introduce our newly developed transport protocol, referred to as HI-TP (High-
volume INCA Transport Protocol).

3. State-of-the-Art Network Transmission Protocols

The Transmission Control Protocol (TCP) is one of the core protocols of
the Internet protocol suite [9]. TCP provides reliable, in-order delivery of data
streams, making it suitable for applications like file transfer and e-mail. Despite
its importance, TCP has many drawbacks. The most significant problem for
our purposes is that TCP does not perform well on broadband high latency
networks. This is because the maximal bandwidth usable by TCP is an inverse
function of the latency.

An alternative to TCP is the User Datagram Protocol (UDP), which is yet
another core protocol of the Internet protocol suite [8]. Using UDP, networked
computers can send short messages (known as datagrams) to one another. UDP
does not guarantee reliability or ordering in the way that TCP does. Datagrams
may arrive out of order, appear duplicated, or go missing without notice. Avoid-
ing the overhead of checking whether every packet actually arrived makes UDP
faster and more efficient, at least for applications that do not need guaranteed
delivery. Despite this increased performance potential, the lack of reliability
and congestion control makes UDP not suitable for our purposes.

The problems of TCP and UDP have been acknowledged in the field, and
have led to many extended and adapted data transfer protocols. One important
research effort in this direction is UDT (or UDP-based Data Transfer Protocol),
developed at the National Center for Data Mining (NCDM) at the University
of Illinois at Chicago [4]. UDT is designed to effectively utilize the rapidly
emerging high-speed wide area optical networks. It is built on top of UDP with
reliability control and congestion control. A significant result of UDT is that
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it was capable of reaching 711Mb/s (peak 844Mb/s) disk to disk data transfer
between the United States and Russia. This result still represents the highest
recorded information transfer between these countries.

Another reliable data delivery protocol, that proxy TCP connections over
UDP, is Airhook [3]. Unlike TCP, Airhook gracefully handles intermittent,
unreliable, or delayed networks. Other features include session recovery, con-
gestion control, and delivery status notification. In particular, Airhook continu-
ously transmits small status packets to keep both endpoints aware of connection
status; lost data packets are transmitted immediately when their absence is re-
ported.

Despite the impressive results obtained with UTP and Airhook, both pro-
tocols can not exploit network storage capabilities. As there is not a straight-
forward manner to integrate such capabilities (efficiently) within existing pro-
tocols, it is essential to define a new transport protocol for our purposes. Our
proposed protocol will be introduced in the following section.

3.1 Related Approaches to Wide-Area File Transmission

Apart from low level transport protocols, there are several related efforts that
must be mentioned here, and that must be compared in our evaluations. First,
there is the distributed file system implementation created by Sun Microsystems,
called NFS. Over the years, NFS has been the only satisfactory solution for a
Network Attached Storage (NAS). Although NFS is much more than a file
transfer system, it is relevant to compare NFS with our efforts, in particular due
the recent trend to use NAS/SAN storage in Grid environments.

Second, the ’scp’ application, part of the OpenSSH package, even if it is
partially out of the scope of this paper, as it relies on SSL and TCP, is worthwhile
to incorporate ’scp’ in this paper’s evaluation due to the fact that it is such a
commonly used tool.

Finally, ’Sendfile()’ is an operating system kernel primitive that aims to send
a file in a ’zero copy’ manner, using as little CPU time as possible. It is available
in recent kernel editions of major operating systems. Sendfile() is particularly
useful in our evaluations, as it allows us to send a file over TCP without any
kind of overhead.

4. HI-TP: High-volume INCA Transport Protocol

In this section we introduce our new transport protocol, which we refer to
as HI-TP, or High-volume INCA Transport Protocol. The aim of HI-TP is to
transfer very large volumes of data in the most efficient way. The protocol is
connectionless, such that it can deal with multiple peers easily and get easily
proxied.
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Table 1. HI-TP header

0 1-15 16 17-31
mo offset mr rid
ml length checksum

payload. . .

Table 2. Simplified HI-TP header

0-15 16-31
offset rid
lenght checksum
mblock Mblock

payload. . .

A natural way to optimize data transport is to minimize overhead. To this
end, HI-TP tries to identify the minimal amount of information needed to trans-
fer a byte-sequence across the Internet successfully. In addition, HI-TP is made
generic and extensible to allow it to deal with underlying heterogeneous net-
work infrastructures and overlying applications. For these reasons, we have
chosen the scheme in table 1 as the packet header of our prototype protocol
implementation. A very important role is played by the most significant bits
(msb) of the fields rid, checksum and offset. A more detailed explanation of
the header fields is available in [2]. We believe that, using this strategy, we are
able to keep the protocol extremely expandable. Each extension field is placed
after the checksum in the same order as the basic fields. Each extension field
of the same type is placed contiguously.

All HI-TP packets carry from a sender, identified by its IP address in the
field Source Address of the IP protocol header, to a receiver, identified by his IP
address in the field Destination Address of the IP protocol header, the amount
of data specified by the length field of the HI-TP. When the packets arrive at
the receiver side the data are stored in a buffer identified by the rid at the offset
specified by the HI-TP header.

4.1 A Simplified Header

A simplified header, which is more targeted to current network infrastruc-
tures, could be considered as an alternative. For such a simplified header def-
inition, we apply the following basic assumptions: (1) 64 KB is sufficiently
large as a single packet size, (2) a peer will never have to handle more than
65536 incoming memory buffers at a time, and (3) a single dataset is limited
to 256 TB. Under these assumptions our HI-TP header would look as in ta-
ble 2. This simplified header definition incorporates two new field definitions:
m block, minor block, and M block, major block. Not very different from
offset they allows one to address blocks of 64 KB and 4 GB respectively.

With this simplified definition, the implementation performance is expected
to increase significantly due to the fixed header size, and (thus) a reduced
complexity of packet analysis. Still it is important to note that, even though
a 256 TB addressing space is not perceived as a limit today, this may (and
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probably will) change in the future. Hereinafter we will refer to this simplified
version as HI-TP.

5. Performance Evaluation

The following presents the results obtained with our new protocol using a
basic sender-receiver scenario.

We have performed our measurements on a testbed system comprising of
three standard desktop PCs running Debian GNU/Linux "etch". The first ma-
chine, i.e. the ’sender’, is a DELL Dimension 4400 with a Pentium 4 1.7 Mhz
processor and 512 MB of RAM. The second machine, i.e. the ’receiver’, is a
DELL Dimension 4500 with a Pentium 4 2.4 Mhz processor and 512 MB of
RAM. The traffic between these two hosts, or ’peers’, is entirely routed through
the third machine, hereafter referred to as the ’gateway/router’. In the initial
stages of our measurements the gateway/router machine was a DELL Dimen-
sion L667. Due to an unfortunate malfunction of this particular machine, it
has been replaced by a DELL PowerEdge 600SC. Importantly, the replacement
of the gateway/router machine had no measurable effect on performance. We
have performed measurements using several Fast Ethernet network cards, with-
out noticing significant differences in the performance behavior of our testbed.

The gateway/router machine is of essential importance in our testbed system,
as it is used to introduce controlled packet loss, latency, and packet reordering in
a transparent way. These variations in network and transmission behavior have
been incorporated using the ’netem’ network emulation suite, which consist of
a kernel component, and an user space extension to iproute2. Hence, all applied
software components are either open source, or developed by ourselves.

5.1 Theoretical Scenarios vs. Real-world Scenarios

As it is quite difficult, if not impossible, to realistically compare protocols
acting on different layers, it is important to realize that — for our purposes — it
is sufficient to simply transfer a static buffer and to see under which protocol
the highest throughput is obtained. For this reason, we generated our own static
buffer, consisting of the first 100 Mbytes of the Linux kernel 2.6.18 tar archive.
This buffer has been transmitted under varying circumstances to analyze the
behavior of our system in comparison with other protocols.

In our evaluation we have followed two alternative approaches. In the first
approach we have studied the behavior of our protocol under variations in
emulated network latency (ranging from no additional emulated latency up to
110 ms of emulated latency), and variations in packet loss (in the range of
0-2%).

In the second approach we have tried to create a real-world scenario with all
sorts of ’network perturbations’ occurring concurrently: i.e., variable latency
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and packet loss. We have decided to ignore issues such as packet duplication and
packet corruption. Even though these issues are essential for testing a protocol,
if no bugs are present in the protocol implementation, packet duplication has
no significant effect on performance. Similarly, packet corruption has the same
effect as packet loss, and thus can be ignored safely.

5.2 Measurements

In our first measurement (see Figure 1), we compare HI-TP, TCP and UDP
under variations in emulated latency, but without any emulated packet loss or
emulated packet reordering. Essentially, we should also add a small value
representing real network latency.

In Figure 1 we can immediately see that TCP throughput is significantly and
negatively influenced by increased latency, which is a well-known property of
TCP. UDP, in contrast, performs much better under increased latency. If latency
becomes significantly large, however, UDP also suffers from a significant de-
crease in throughput. In the graph it is clear that throughput obtained with our
newly defined HI-TP protocol hardly suffers from variations in latency at all.

In our second measurement (see Figure 2) we compare the throughput perfor-
mance of HI-TP, UDT, NFS, TCP Sendfile, and TCP Sendfile on top of Airhook
using a link without latency (or less than 1 ms, as stated above), and no packet
reordering, under variations in packet loss ranging from 0% to 2%. As can be
seen in Figure 2, in this emulated scenario HI-TP again performs better than all
other protocols. However, we can also observe that HI-TP is affected by packet
loss in the same relative amount as all other protocols, with the exception of
TCP Sendfile on top of Airhook. At this time of writing the exact reasons for
this behavior of Airhook are unknown. This will be investigated further in the
near future.
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In our third evaluation we reconstruct a real world scenario, as can be ex-
pected on a link between Amsterdam and Paris. On such a link, the latency for
http traffic is around 29 ms, with a variation of +/- 1 ms. As a consequence,
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packet reordering is a realistic and common phenomenon. Hence, for real-
world scenarios we must evaluate how the different protocols react to packet
reordering as well. Figure 3 shows that UDT seems to perform better under at
least a certain amount of packet loss (i.e., around 0.5%). This is because an
increased packet loss results in an increased number of acknowledge messages,
and hence and increased sensitivity to packet reordering. Figure 3 also clearly
shows that HI-TP is not at all influenced by packet reordering. Essentially, this
is because the HI-TP buffer in the receiver is addressed directly from the packet.

In our final measurements (see Figure 4) we compare the absolute time for a
file transfer as obtained in user space for UDT, scp, and HI-TP. In this measure-
ment 25% of the packets (with a correlation of 50%) will be sent immediately,
while all others will be delayed by 10 ms. Also, the scp measurements have
been performed without any latency or packet reordering introduced, just to
use the optimal scp case as a reference, for a real user-perspective comparison.
In Figure 4 we can again observe that HI-TP performs best, and that it is not
at all affected by packet reordering. More importantly, end-users are not at all
bothered by any such troubles on the underlying network.

Based on all our measurements we conclude that HI-TP is only marginally
influenced by increased network latency, and not at all affected by packet re-
ordering. HI-TP is still vulnerable to packet loss, but this is a condition which
is rather unusual in high-speed optical Grid network links.
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6. Future work

The HI-TP protocol initially is intended to be applied in a set of tools that
allows straightforward development of high-performance distributed multime-
dia applications, which are to be executed on a very large scale. To this end,
the Vrije Universiteit is developing a set of advanced Grid programming tools,
each of which will be described briefly in the following. This section concludes
with a brief description of a set of target applications.
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6.1 Java-GAT

Today, Grid programmers generally implement their applications against a
Grid middleware API that abstracts away part of the complexities of the under-
lying hardware. This is a daunting task, because Grid APIs change frequently,
are generally low-level, unstable, and incomplete [6]. The Java Grid Appli-
cation Toolkit (JavaGAT [16]), developed at the Vrije Universiteit, solves the
above problems in an integrated manner. JavaGAT offers high-level primitives
for access to the Grid, independent of the Grid middleware that implements this
functionality. JavaGAT integrates multiple middleware systems into a single
coherent system. It dynamically forwards calls on the JavaGAT API to one or
more middlewares that implement the requested functionality. If a Grid op-
eration fails, it will automatically dispatch the API call to an alternative Grid
middleware. Using JavaGAT, Grid applications can, among other functionality,
transparently access remote data and spawn off jobs within Grid installations.
JavaGAT further provides support for monitoring, steering, resource broker-
ing, and storing of application-specific data. The importance of JavaGAT is
illustrated by the fact that, based on these efforts, the Open Grid Forum is now
standardizing the next generation Grid programming toolkit: the Simple API
for Grid Applications (SAGA).

JavaGAT is freely available at: https://gforge.cs.vu.nl/projects/javagat/.

6.2 Ibis

Grid systems, by nature, are open world and faulty, meaning that resources
can be added and removed at will, and crash at any moment. Thus, to ensure
robust Grid execution, application programmers must be handed the basic func-
tionality to allow their applications to be made malleable, such that processors
can be added and removed at application run-time.

Ibis [17], developed at the Vrije Universiteit, is a platform-independent
Grid programming environment that combines flexible treatment of dynam-
ically available resources with highly efficient object-based communication.
Given his results it follows that Ibis provides a stable, efficient, and platform-
independent communication layer that supports the open, dynamic, and faulty
nature of real-world Grid systems.

Ibis is freely available at: http://www.cs.vu.nl/ibis/.

6.3 Parallel-Horus

Whereas JavaGAT and Ibis provide the basic functionality to allow super-
computing applications to execute efficiently and transparently in a Grid system,
it is still up to the programmer to identify the available parallelism in a problem
at hand. For the application programmer — generally a domain-expert with
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limited or no expertise in the field of supercomputing — this is often an in-
surmountable problem. Clearly, there is a need for programming models that
either alleviate the burden somewhat or, preferably, shield the user from all
intrinsic complexities of parallelization.

Parallel-Horus [11, 10, 12] is a cluster programming library that allows its
users to implement parallel multimedia applications as fully sequential pro-
grams, using a carefully designed set of building block operations. These
algorithmic patterns of parallel execution cover the bulk of all commonly ap-
plied multimedia functionality, while hiding all complexities of parallelization
behind a familiar sequential API (identical to that of an existing sequential
multimedia computing library: Horus [5]). Notably, Parallel-Horus was ap-
plied in recent international benchmark evaluations for content-based video
retrieval, and played a crucial role in achieving top-ranking results [13–14].
A proof-of-concept implementation of Parallel-Horus is freely available at
http://www.science.uva.nl/˜fjseins/ParHorusCode/.

6.4 Integration of Tools

The Parallel-Horus programming model is being extended for use in Grid
systems [10]. To this end, an innovative runtime system (RTS) is being de-
veloped, based on the notion of a SuperServer — i.e., a lightweight server
implementation that allows for uploading of data as well as program codes (i.e.,
transferring Java byte codes by way of dynamic class loading over the network).
With JavaGAT’s transparent job submission functionality, the RTS starts a pool
of SuperServers on behalf of a coordinating (client) application, hidden from
the user. The pool of SuperServers is then applied by the RTS on behalf of the
client application on a need-be basis, by uploading objects (data) and related
program codes. Importantly, in this way — and in contrast to the common
use of (web) services in Grid computing — it is the application programmer
who implements the actual program code executed by a SuperServer. In case
the uploaded code represents a (sequential) sequence of Parallel-Horus calls,
the SuperServer, when running on a cluster, executes these calls transparently
in data parallel fashion. By transparently outsourcing the running of Parallel-
Horus code to multiple SuperServers in a fully asynchronous manner, we arrive
at a ’wall-socket’ computing solution: transparent task parallel execution of

data parallel services.

6.5 Target Applications

The research group at the Vrije Universiteit closely collaborates with the Uni-
versity of Amsterdam on urgent MMCA problems, classified in two groups:
real-time analysis and off-line categorization. Realistic examples from both
groups include (1) the comparison of objects and individuals in video streams
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obtained from surveillance cameras, as researched in close cooperation with the
Dutch Forensic Institute (NFI), (2) iris-scan based identification and automatic
fingerprint checks (e.g. to be performed at international airports), also with
the NFI, (3) the international NIST TRECVID evaluation [14], i.e. the yearly
bench-mark evaluation for approaches to finding semantic concepts in archives
of TV news broadcasts from (a.o.) ABC and CNN, (4) interactive access to
Petabytes of current and historic TV broadcasts, as researched in close collab-
oration with the Dutch Institute for Sound and Vision (Beeld&Geluid). These
examples represent urgent MMCA problems that will serve as targets in our
future research.

7. Conclusions

In this paper we have presented and validated a new transport protocol (HI-
TP) conceived for active network caching, initially intended for coordinated data
management in large scale distributed multimedia computing applications. To
this end we have presented the rationale of logistical networking and active net-
work caching, and indicated the need for a new data transmission protocol. In
our overview of state-of-the-art transport protocols we have indicated problems
and drawbacks with respect to our purposes, mostly from an end-user applica-
tion and integration perspective. We have presented the new protocol, referred
to as HI-TP, or High-volume INCA Transport Protocol, focusing on its abil-
ity of addressing, potentially, unlimited buffers in a simple manner. We have
performed an initial set of measurements using our new protocol on a simple
testbed environment, and compared our results with those obtained with other
protocols. Our main conclusions are that HI-TP performs better than existing
protocols, under many realistic variations in transmission and network behavior.
Most importantly, HI-TP is only marginally influenced by increased network
latency, and not at all affected by packet reordering. HI-TP is still vulnerable to
packet loss, but this is a condition which is rather unusual in high-speed optical
Grid network links. Finally, we have given a brief overview of the set of tools
in which our newly developed transport protocol will be integrated in the near
future.
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Abstract The definition of a generic Grid scheduling architecture is the concern
of both the Open Grid Forum’s Grid Scheduling Architecture Research
Group and a CoreGRID research group of the same name. Such an
architecture should provide a blueprint for Grid system and middleware
designers and assist them in linking their scheduling requirements to
diverse existing solutions and standards. Based on work executed within
the Open Grid Forum related to scheduling use cases and requirements,
which tackles the problem from a more theoretical point of view, we
approach in this paper the problem practically by evaluating the teikoku
Grid Scheduling Framework in the light of standards-compliance. The
results of this evaluation and the existing Grid Scheduling Architecture
proposal are set into context, existing gaps are described and potential
solutions to bridge them are introduced. In doing so, we concentrate
on the interoperability of schedulers and the necessity of a Scheduling
Description Language to achieve it.
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1. Motivation

The overall goal of our work is the provision of a generic Grid schedul-
ing architecture. This work is primarily conducted by the Grid Schedul-

ing Architecture Research Group (GSA-RG1) of the Open Grid Forum
(OGF) and a research group of the same name placed within CoreGRID’s
Institute on Scheduling and Resource Management2. The primary ob-
jectives defining the architecture are the following three:

Standards-compliance. The Grid scheduling architecture should,
wherever possible, be based on languages, protocols, and specifi-
cations which are standards-compliant.

Interoperability. Implementations following the Grid scheduling ar-
chitecture blueprint should be interoperable.

Universality. A realisation of the Grid scheduling architecture should
be possible without following a specific design paradigm or using
a certain technology.

We approach the problem space from two viewpoints, a generic (and
more theoretical) one defining generic use cases and requirements, and
from a practical one evaluating a standards-based Grid scheduler (cf.
Section 2). As the former has already been described in a number of
publications, we concentrate here on the latter by outlining the fea-
tures, design, and architecture of the teikoku Grid Scheduling Framework

(tGSF; cf. Section 3). Based on this framework and the research as
well as production requirements set, we outline the gaps in the current
standards landscape, reflect upon interoperability of Grid schedulers,
and sketch the efforts necessary towards a standards-compliant, interop-
erable, and universal Grid scheduling architecture definition (cf. Section
4). In a concluding section we describe the efforts already under way
and the steps to be taken in the near future.

Please note that we use the term ”standards” in a broad sense through-
out this paper. We do not merely refer to fully specified, tested, and
certified standards, but also to specifications which are under develop-
ment and are likely to become standards some time in the future.

2. Problem Space

The scheduling and allocation of tasks, jobs, or workflows on a set
of heterogeneous resources in a dynamically changing environment is a

1https://forge.gridforum.org/sf/projects/gsa-rg
2http://www.coregrid.net/mambo/content/blogcategory/16/295
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complex problem. There are still no common Grid scheduling strategies
available which solve this problem and implementations of scheduling
systems still require specific architectures customised for the target com-
puting platform and the application scenarios. Moreover, the complexity
of applications, variety of user requirements, and system heterogeneity
do not permit the efficient manual performance of any scheduling pro-
cedure.

Although no common and generic Grid scheduler yet exists, several
common aspects can be found examining existing Grid scheduling uses
cases [12] and Grid schedulers [11]. This leads to the assumption that a
generic architecture may be conceivable not only to simplify the imple-
mentation of different schedulers but also to provide an infrastructure
that enables interoperability between those different systems.

Furthermore, a number of standards that are useful in a Grid schedul-
ing context are already specified and are also implemented in a number
of Grid middlewares and services. Such standards are – ideally – be-
ing developed by consortia comprising representatives from academia
and industry. Regarding Grids, the respective consortium is the Open
Grid Forum3. It has produced a number of scheduling-related standards,
which we briefly introduce here:

The OGSA High Performance Computing Profile (OGSA-HPCP) nar-
rows two other specifications in order to provide a common submission
interface for HPC jobs to HPC resources. It comprises a subset of the
Job Submission Description Language [2] (JSDL), an XML dialect for
the description of job requirements and specifications, and the OGSA

Basic Execution Service [9] (OGSA-BES), a Web Service definition for
supplying arbitrary activities to generalized resources.

The Web Services Agreements specification [1] (WS-Agreement) de-
fines a language and a protocol to represent services through Service
Level Agreement (SLA) templates, create agreements based on offers
and and monitor agreement compliance during service execution.

The OGSA Resource Usage Service (OGSA-RUS)4 and the OGSA
Usage Records (OGSA-UR)5 provide means to store resource usage and
accounting information respectively.

The Distributed Resource Management Application API [3] (DRMAA)
specification provides high-level functional interfaces for the submission
and control of jobs to Distributed Resource Management (DRM) sys-

3http://www.ogf.org
4http://forge.ogf.org/sf/projects/rus-wg/
5http://forge.ogf.org/sf/projects/ur-wg/
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tems. It is integrated in a number of academic and commercial Grid
systems.

The OGSA Resource Selection Services (OGSA-RSS)6 defines pro-
tocols and interfaces for the Candidate Set Generator (CSG) and the
Execution Planning System (EPS). The CSG generate a set of (compu-
tational) resources that could potentially execute a job, while the EPS
actually makes the decision.

Since we have already gained good understanding of common re-
quirements regarding a Grid Scheduling Architecture, we decided within
CoreGRID to tackle the problem also from a practical perspective in or-
der to adjust our theoretical findings. Our candidate Grid scheduler,
which is described in detail in the following section, has been designed
and implemented with standards-compliance in mind. It is evaluated in
the light of our architectural objectives (see Section 1) and the findings
are related to the general Grid scheduling requirements.

3. A Standards-based Grid Scheduler

Although Grid scheduling has become an important topic in various
businesses and many commercial Enterprise Grid solutions7 are available
at the market, the development of advanced scheduling strategies and
algorithms is mainly a matter of scientific research. However, the trans-
ferability of the gained results into production environments is problem-
atic at best, since model assumptions are usually not in line with the
conditions in enterprise scenarios.

The teikoku Grid Scheduling Framework tries to bridge the gap be-
tween research and production systems, the requirements of which differ
significantly: Research Requirements include the availability of an ex-
tensible toolbox that supports the development and analysis of differ-
ent models, algorithms, and strategies [8], [7]. Also, there is a strong
need for high-performance simulation capabilities and efficient evalu-
ation tools. Production Requirements, however, comprise support for
easy deployment and configuration, and scalability in large Grid com-
munities [6]. Furthermore, in order to enable interoperation with other
existing systems, compliance with open standards is needed.

Following, we depict the features and design of tGSF as a basis for
reviewing requirements and best practices of real-world scheduling solu-
tions. In this context, we highlight coverage and desiderata of current

6https://forge.gridforum.org/sf/projects/ogsa-rss-wg
7
Such as LSF (http://www.platform.com).
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standards and protocols regarding various requirements and features in
such implementations.

3.1 Features & Design

As depicted in Figure 1, the architecture of tGSF is divided into
four layers, namely the Foundation Layer, the Commons Layer, the Site
Layer, and the Grid Layer. Note that, although the usage of Foundation
and Commons are mandatory and highly recommended, respectively,
the different layers are loosely coupled and the inclusion of Site and
Grid into a system instance is mutually optional.
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Figure 1. Architectural view of the Teikoku Scheduling Framework

Here the different layers with their features and integration points
into common standards are described.

Foundation Layer. The basis for tGSF is an event-driven kernel

responsible for time management and event dispatching. This kernel
component uses an internal clock to isolate higher layers from the real-
time clock and provide a common abstraction for time instants and pe-
riods. Furthermore, it provides an extensible type system which allows
the handling of domain-tailored events.

The behaviour of tGSF, however, does not depend on the kernel
itself: in fact, it is determined by the Runtime Environment, which –
depending on the implementation – allows the realisation of real-time as
well as simulation or debugging systems.

Commons Layer. To provide general abstractions for management-
related concepts, a Job Model, Metrics, and Persistence services are
supplied in this layer.

The job model uses a holistic view on units of work within a Grid
environment: it consists of a description of static job characteristics and
resource requirements, a life-cycle which represents current and historic
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states of the job, and a provenance that denotes the track or route a
job has taken from its original submission until final assignment and
execution. In this context, JSDL can be used to at least tackle the
specification of static properties and resource constraints for a job.

The metrics services provide a unified interface to the measurement
data during runtime: values regarding different aspects can be stored
and retrieved, e.g. for supporting advanced decision strategies. Such
metrics may include traditional performance objectives such as response
time and utilisation as well as accounting information such as OGSA-
UR.

The persistence services offer a common access to different storage
mechanisms for recording and replaying metrics values, e.g. files and
relational databases as well as standard resource usage services as defined
by OGSA-RUS.

Site Layer. The management of a distinct set of resources is con-
ducted by the Site Layer, which abstracts the implementation of sched-
uler functionality, see Figure 2. In addition to appropriate data struc-
tures for keeping information on the current schedule, it allows the ap-
plication of assignment strategies during runtime, and offers a Service
Provider Interface (SPI) towards traditional local resource management
systems. These interfaces might conform to the wide-spread DRMAA
standard, but also to OGSA-BES, OGSA-HPCP, or more traditional
protocols such as Globus WS-GRAM [5] or the POSIX batch manage-
ment family of commands [10].
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Figure 2. tGSF’s Site Layer

Although the strategies calculate the assignment of work to resources,
their results have advisory character: they propose their solutions to the
scheduler which in turn decides on the actions to take. This allows the
scheduler to consult multiple strategies at a time and select the most
appropriate solution.
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The information provider bundles static as well as dynamic site infor-
mation such as number of resources, current utilisation etc. and exposes
this data to the other Site Layer components and – at least partly – to
the global environment.

Grid Layer. In order to enable an interaction component for the
distribution of workload to other participating sites within a Grid envi-
ronment, the Grid Layer provides facilities for the policy-based exchange
of jobs.

Depending on the Grid environment’s scheduler topology, the Deci-

sion Maker component has different responsibilities. In centralised or
hierarchical environments, it’s main task is the acceptance of jobs and
their assignment to underlying resources or subordinate brokers. In de-
centralised scenarios, the redistribution to other decision makers is con-
ducted additionally; the decision on the modalities is based on a set of
policies regarding acceptance and distribution of jobs. A basic standard
to be used in this context is the WS-Agreement specification.

4. Bridging the Gap – The Grid Scheduling
Architecture

The previous section gave some architectural details of the tGSF
and pointed out several interfaces between services and layers where
standardised protocols can be used to ensure a flexible and customisable
application of the framework.

Although there are already a couple of possible solutions for workload
submission, job description, metrics and persistence, for several impor-
tant interfaces in the grid scheduling context either no or not adequate
standards exist, yet. One goal of this section is to highlight these gaps
and to define requirements for possible solutions (cf. Sub-section 4.1).

Furthermore, this section outlines the efforts necessary to bridge the
gaps (cf. Sub-section 4.2) and links them with existing standards to
provide a Grid scheduling framework to test the interoperability of Grid
schedulers (cf. Sub-section 4.3). This interoperability test together with
the theoretical work described in this paper provide the foundations to
define the Grid scheduling architecture. A side-effect of our work is that
we evaluate the relations of the different OGF specifications and groups
in the scheduling domain, point out where things are missing, and help
to sketch a broad picture.

4.1 Existing Gaps

4.1.1 Job Model. The description of a job is mainly covered
by JSDL: many aspects such as resource requirements, execution pa-
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rameters, and input/output data definitions are defined therein and its
extension mechanism allows proprietary enhancements. However, JSDL
does not support the description of user-specified and scheduling-related
constraints such as requested start times, due dates and deadlines, or
runtime estimations.

The tracking of a job’s life-cycle is also currently not properly stan-
dardised. Although OGSA-BES defines a very basic state model, it does
not relate to intermediate states during the process of scheduling a job.
Furthermore, no common interface to access the entire life-cycle of a job
exists; one can only retrieve its current state.

The same holds for storing and retrieving provenance data of a job.
Especially in distributed architectures this information is essential not
only to the user, but also highly beneficial for supporting the decision
process of scheduling strategies.

4.1.2 Algorithm & Policy Model. Since the design of ad-
vanced scheduling strategies is a complicated task which is mostly con-
ducted in research, an easy integration of developed results into available
Grid scheduling products would be highly desirable.

To this end, a standardised interface for pluggable decision strategies
is needed to enable the simple deployment of newly created algorithms
into production systems. Besides that, such an approach would sup-
port an integrated development life-cycle for such algorithms, since both
test/simulation environments as well as real-world systems would behave
in a similar way. A possible first step towards such an interface could
be the aforementioned advisory characterisation of strategies, where the
scheduler requests possible solutions to reach an adequate decision.

The same problem applies for acceptance and distribution policies on
the Grid interaction level.

4.2 Bridging the Gaps

From the architectural point of view, which is the focus of our work
and hence this paper, solutions to overcome the issues related to the
Job Model are those of interest since they prevent us from realising a
Grid scheduling architecture with the characteristics given in the first
section. The Algorithm & Policy Model related shortcomings outlined
above need solutions, too, but those are currently not in the focus of
our work as they are related to scheduler-internal architecture which we
treat as a black box in the light of a general Grid scheduling architecture.

JSDL’s extension mechanism has a negative and a positive effect.
Negative is the fact that it can (and is) used to extend JSDL to realise
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proprietary enhancements which run counter to the idea of interoper-
ability. Advantageous, however, is the extension mechanism to specify
all the missing scheduling-related constraints.

To restrict the usage of JSDL to a limited number of attributes we
decided to define a JSDL Profile, like it is e.g done by the OGSA-
HPC group, to achieve an ”a priori” agreement between interoperable
schedulers. This profile defines in detail the supported JSDL attributes
and how they are to be interpreted. Regarding the scheduling-related
attributes which are not included in JSDL, we introduce the Schedul-

ing Description Language (SDL). The goal is to provide a basic set of
scheduling attributes that must be handled by Grid schedulers. Can-
didate attribute categories are time constraints, job dependencies, job
priorities, scheduling objectives/preferences, data-dependent scheduling
information, and queue-based scheduling information. These attributes
may be referenced in SLAs negotiated between Grid schedulers, used for
scheduling decisions, or exploited to execute a job by a local resource
management system.

Regarding the life-cycle of a job, there is the OGSA-BES extension
mechanism to its state model which allows the definition of domain-
specific sub-states. But as far as the access to the life-cycle of a job and
and its provenance data is concerned, only initial effort has been taken
by the JSDL group.

4.3 Scheduler Interoperability

Figure 3. Interoperability of Grid Schedulers using OGF standards
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The interoperability test of Grid schedulers is another major step to-
wards a Grid scheduling architecture. The purpose of this test is to
show that Grid schedulers that are compliant to the standards-based
Grid scheduling architecture we propose, are able to delegate scheduling
requests to other schedulers. For this purpose, we investigated, in addi-
tion to tGSF, two other schedulers, namely the VIOLA MetaScheduling
Service (MSS) [4] and the Grid Resource Management System (GRMS)8.
With the help of the systems’ developers, who will adapt their systems
once the Grid scheduling architecture is fully specified, we gathered the
requirements of the three schedulers regarding the minimal set of JSDL
parameters and the SDL. In combination with the Grid scheduling uses
cases and requirements, the findings from the evaluation of the sched-
ulers are the foundation for the integration of the JSDL Profile and the
SDL with existing standards towards a Grid scheduling architecture.

The interoperability scenario we consider captures a common case:
a scheduler is unable to fulfil a scheduling request. In existing Grid
environments this often implies that the requesting user or service is
informed that the request cannot be fulfilled. In case of interoperable
schedulers, however, the scheduler, which is unable to fulfil a scheduling
request, delegates it to another scheduler. In the context of OGF stan-
dards and based on the afore mentioned investigations and documents,
we define the following interactions to reach agreement on the delegation
of a scheduling decision are required (see Figure 3):

Scheduler A, which realises an OGSA-RSS Execution Planning
Service (EPS), cannot fulfil a scheduler request. The JSDL Profile-
compliant job together with the SDL attributes is part of this
request.

The request is passed to Scheduler B, using WS-Agreement (please
note that we assume that this request crosses administrative do-
mains and we therefore rely on Service Level Agreements).

Scheduler B checks its capabilities.

Scheduler A and B agree/disagree on the conditions to fulfil the
request (again using WS-Agreement).

Scheduler B fulfils the scheduling request either directly by passing
the job to an OGSA-BES service, by negotiating with another
(local) scheduler, or by contacting some proprietary service.

8http://www.gridge.org/content/view/18/99
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Calls to a registry, which has OGSA-RSS’ Candidate Set Generator ca-
pabilities, to check schedulers’ capabilities and queries to local Grid In-
formation Services (GIS) are also part of the information flow of the
interoperability test.

Please note that one could define ways different from the one out-
lined above to delegate scheduling requests, e.g. without negotiating
an Service Level Agreement at all, but within the OGF landscape and
with the requirements derived from the different scheduling systems, the
proposed set of interactions guarantees reliable scheduling services.

Once the participating schedulers have implemented the interoper-
ability interfaces and protocols and the test has been conducted, the
GSA-RG will be able to finally define a Grid scheduling architecture in
an standards-compliant landscape.

5. Status Quo & Outlook

The JSDL Profile and the SDL, which have been introduced in the
previous section as potential instruments to fill the most important gaps
en route to defining a standards-compliant, interoperable, and generic
Grid scheduling architecture, exist as draft specifications. The GSA-RG
is currently working on the finalisation of these documents together with
other groups at the Open Grid Forum. This work is executed under the
umbrella of an scheduler interoperability test where CoreGRID partners
plan to implement the interoperability architecture sketched in Figure 3.
In this test currently participate the Viola MetaScheduling Service9 and
the Grid Resource Management System10, but other CoreGRID partners
have already expressed their interest. The evaluation of this test together
with the findings from the theoretical evaluations will finally result in
the definition of a standards-compliant, interoperable, and generic Grid
scheduling architecture.
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Application API Specification 1.0. Recommendation GFD.22, Open Grid Fo-
rum, Lemont (IL), USA, April 2004.
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1. Introduction
The emergence of pervasive and mobile computing has drawn research at-

tention to integrated mobile Grid systems. Such systems consist of a typi-
cal SOA (Service-Oriented Architecture) backbone extended to include mobile
and small scale devices (Personal Digital Assistants, smart-phones, sensors and
more). There are three hybrid system classes: first, mobile interfaces to grid
resources, where mobile devices are merely interfaces to functionality available
in the Grid system, and do not contribute any services. Second, exploitation
of raw resources (CPU, memory, storage) in small-scale devices, where focus
is on distributing applications for parallel execution usually requiring the par-
titioning of the application into small independent tasks. However, we believe
that the core competence of such devices is their flexibility, pervasiveness, and
location awareness and not their (limited) raw resources. Third, exploitation
of services in mobile and small-scale devices, where the focus is in supporting
mobile services in a SOA system, while also enabling small-scale devices to
contribute services.

The last model is the one that provides the most complete integration where
mobile and micro-devices can be both consumers and providers of services.
Such integration could open up a completely new range of very interesting pos-
sibilities in exploiting the mobile nature of these devices. SOA systems could
extend to reach geographical areas where before it was not possible allowing,
for example, an organization to better control its field operations personnel.
The functional benefits are also significant as mobile devices increasingly offer
unique functionality not found in traditional Grid nodes, such as location aware
equipment, multimedia cameras, intelligent wireless sensors, Global Position-
ing Systems and more.

However, a hybrid Grid system presents a number of interesting challenges.
In a limited environment, pure SOA frameworks cannot easily be deployed. For
example, typical Web Service (WS) and Grid Service (GS) containers (such
as Axis/Tomcat or the Globus Toolkit) assume a plethora of available device
resources, and have a number of complex dependencies. These requirements
render them unsuitable for resource-constrained devices, where a smaller and
simpler container with reduced requirements and dependencies is needed. But
even with the development of such container, it is unreasonable to assume that
all limited devices will adopt the same approach. In dedicated and relatively
static environments certain guidelines can be enforced and adopted so that all
members comply with the same policies. But in a dynamic environment that
aims at agile and opportunistic computing, flexibility and mobility, imposing
such restrictions is undesired.

The contribution of this paper is two-fold: first, we present the design of
a fully J2ME compliant (Java 2 Micro Edition) socket-based server-side con-
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tainer that enables the user to export Java classes available in the device (Section
3). Second, we demonstrate how an aggregator framework enables such mo-
bile services to be accessed using standard-based Web services in a high-level
manner (Section 4). An aggregator service acts as a proxy to a group of het-
erogeneous and mobile underlying server-side components (supporting RMI,
WS, GS, plain sockets and more). Further, aggregators provide an abstraction
layer that hides the dynamicity and heterogeneity of the grouped services, in
order to ease programming and provide a simpler view to high-level clients.
The paper is completed with an evaluation of the LSC framework that verifies
its superiority in terms of performance and resource utilization (Section 5).

2. Related Work
Mobile OGSI.NET [3] is an implementation of an OGSI (Open Grid Services

Infrastructure [4]) based Grid services container for mobile devices based on
Microsoft’s PocketPC. Mobile OGSI.NET, despite being one of the earliest
efforts, has been abandoned due to its restrictive implied programming model
and nature, and has become obsolete due to the emergence of new standards in
the form of the Web Services Resource Framework (WSRF) [5].

A generic component-based platform has been presented in [6–7] and has
been part of research work conducted under CoreGRID [8]. Its design goals are
the generality, reconfigurability, dynamic adaptation to system conditions and
expandability of the platform. While this approach does not focus on small-
scale devices, it offers a generic approach and an attractive model that could be
adapted to suit the atypical environment of mobile hybrid Grid systems. At the
time of writing, the platform remains at a design level.

WSPeer is a generic SOA-oriented toolkit based on the core Web services
technology of SOAP that enables applications to perform the core SOA opera-
tions in an environment agnostic manner [9]. It has three bindings to different
underlying middleware systems: the conventional HTTP and UDDI binding
to the most-frequently used SOA stack; bindings to Peer-to-Peer middleware,
such as JXTA and P2PS [10]; and a binding for constrained devices called
WSKPeer. It also supports many WS-* specifications, including WS-Security,
WS-Addressing, WS-Transfer and WS-RF. WSKPeer [11] (‘K’ for kilobytes)
exposes a WSPeer restraint-device binding but focuses on the message abstrac-
tion, reducing all activity to asynchronous XML message exchanges. WSPeer
is implemented using kXML and J2ME and can support service description
parsing, including complex types, and sophisticated message exchanges that
support notions of state and events, in particular WS-RF, despite the limited
availability of processing power. WSKPeer provides an interesting approach to
service orientation but it is at an early alpha stage of development and therefore
premature for integration in the work presented here.
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KSOAP [13] and kXML [12] have been successfully used in experimental
settings to support mobile servers, SOAP engines, and XML parsing, installed
on limited Java-based devices. One such implementation is the MicroSer-
vices framework [1] developed at the Monash University in Australia. This
framework comprises of a stripped down mobile HTTP server, supported by a
number of components to handle either HTTP or SOAP requests, thus allowing
the deployment of Web services in resource-limited devices. The system al-
lows only restricted Web services in terms of functionality, method complexity,
and supported data types, while scalability is also reduced, with the number of
simultaneous connected clients kept to low numbers to preserve resources.

Raccoon [2] is an effort to port Apache’s popular httpd daemon into the
Symbian-powered S60 Nokia phones. Raccoon encompasses a connectivity
solution able to provide a mobile phone with a unique global URL accessible
through HTTP from anywhere once online, thus enabling the concept of mobile
Web sites (or "mobsites"). A significant benefit from having a mobile Web
server is the enabling foundation for developing and deploying Web services
on the smart phone. This would greatly widen the applicability, and allow for
more familiar, service-oriented communication with the mobile devices.

3. Lightweight Server-side Container (LSC)
The inherent limitations of mobile devices enforce certain restrictions re-

garding the nature of the hosted server-side components. First, while typically
a service can handle complex operations, the nature and role of mobile devices
in an agile, pervasive, and context-aware environment suggest otherwise. Such
services should perform very well defined, simple, and short operations, opti-
mized for resource-constrained devices. Further, the nature of the services must
not be transient (like in the WS paradigm) as there is limited scalability and
even a small number of client requests can quickly deplete available resources.
Instead, permanent and stateful services must be employed, first to simplify ser-
vice lifecycle management and reduce the cost of service initialization, second,
to support state and context aware operations.

Several technical requirements were identified for the LSC design. First, the
CPU, memory, and storage footprint of the LSC must be as low as possible.
Further, in an effort to preserve battery energy for end-user operations, when
the level of battery is low the LSC is automatically shut down and does not
accept any new requests. Second, the prototype must be fully J2ME compliant
to ensure a high degree of interoperability and compatibility with a wide range
of mobile devices. Third, it must be autonomous with no software or techno-
logical dependencies to enable easy deployment and wide adoption. Finally, it
should offer a user-friendly GUI to enable the easy exportation of server-side
components.
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Figure 1. Architectural Overview of MPA/LSC and VC Proxy

The LSC is part of the Mobile Platform Agent (MPA), a small software
component that accompanies the Virtual Clusters (VC) platform (more details
in the next section), and is responsible for several non-functional properties
such as monitoring, discovery, activation and more. The MPA encapsulates the
LSC to provide the necessary GUI and high-level function management.

The LSC consists of three distinct components: the Server Socket Listener
(SSL), the Server Request Handler (SRH), and the Service Registry (SR) (Fig.
1). The SSL is responsible for initializing, maintaining, and terminating the
server socket in the mobile device, listening and receiving client requests on that
socket, and forwarding them to the SRH. The SRH validates the TCP requests
(against the required protocol format) and interacts with the SR in order to
activate the relevant Java service and invoke the requested method. The LSC
message protocol has the following format:

LSC_INV|<service URL>|<method name>|<serialized arguments>

for instance:

LSC_INV|lsc://192.168.1.3:5678/vclustercdc.ImageService|
processImage|1984592123<arg byte array>

All the service method arguments, as well as the return value if any, are serialized
into plain byte arrays before TCP transmission. The SRH is then responsible for
the de-serialization of the arguments before supplying them to the relevant Java
service. Finally, the SR is a permanent storage facility that stores information
relating to the local shared Java services, namely the Implementation and the
Interface classes. This information is supplied by the service provider through
the GUI, a screenshot of which is shown in Fig. 4.

At the other end (the VC proxy), a number of components perform the
opposite operations than the LSC. The Service Request Translator (SRT) is
responsible for transforming high-level method invocations into low-level LSC



164 GRID COMPUTING: ACHIEVEMENTS AND PROSPECTS

protocol requests, ready to be transmitted through the TCP socket. The SRT
also serializes all method arguments into plain byte arrays, before forwarding
them to the Socket Communicator (SC), which is responsible for the actual
transmission. It has to be noted that developers would never directly make use
of the LSC protocol but instead will only access LSC devices through the VC
Proxy which knows how to "talk" in LSC (see Section 4.1 for more details).

4. Aggregator Services and LSC Framework
Aggregator services are at the core of the VC platform. The VC architecture

focuses on providing the means to overcome the resource limitations, dynamic-
ity, and mobility that humble the mobile domain. The main conceptual idea is
to hide the big cardinality of the mobile domain by exposing all mobile devices
as a single virtual entity, thus enabling a smooth integration and reduce the
administrative and performance overhead. In order to present a group of de-
vices as a single entity, a representative proxy node is required. Hence, the VC
approach is a proxy-based, partially centralized design, where the grid system
is merely extended to include a single extra node: the proxy, which acts as the
gateway for the underlying group of mobile devices [14–15].

The main entity in the realization of a VC is the aggregator service (or simply
’Aggregator’). The Aggregator resides at the proxy node, and is responsible
for a group of mobile devices that provide a similar resource or service (where
similarity is determined by the implemented interfaces). Aggregators expose
single, consistent, and permanent interface points to functionality available in
the fabric service layer. Each Aggregator is generated and deployed on the fly,
the first time that a particular type of service is made available for sharing in
a VC -there is one Aggregator for each different type of service or resource.
Fig. 2 depicts the VC architecture, which focuses primarily on providing the
functionality of the proxy layer, which consists of the Aggregators, the core
platform services that support various non-functional aspects, and a collective
layer that enables coordinated and concurrent access to fabric services. Aside
of these components, an API is also provided, to enable the development of
sophisticated VC-aware hybrid grid applications. Each main service group
is associated with, and is responsible for, one or more of the main challenge
areas: monitoring for controlling dynamicity, discovery for managing mobility,
collective layer for efficient management of large numbers of dynamic nodes,
and there is also a number of supporting service groups, including indexing,
invocation and more.

4.1 Overview of Communication Models
The LSC on its own presents a number of interesting challenges. Despite

its efficiency (see Section 5) and functionality, it is not an interoperable ap-
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Figure 2. High Level Overview Depicting the Most Important Components

proach as it is based on a customized communication protocol format over TCP
sockets. The low-level socket based communication model employed must be
encapsulated to provide a more abstract development environment. The VC
platform is used in this case, to decouple the high-level clients from the socket-
dependant LSC services on mobile devices and enable high-level interactions.
Communication at a conceptual level still flows between the client and the
LSC-exposed services, but underneath, the VC proxy is the intermediary that
translates the network-agnostic client requests into low-level LSC/TCP socket
streams. Communication between the client and the VC proxy (in essence the
relevant Aggregator that represents the specific type of service) is unmodified
WS based HTTP/SOAP. The Aggregator then translates the request, and con-
tacts the LSC through a TCP socket using the LSC communication protocol.
The same socket is used to return the results once the execution on the mobile
device finishes.

4.2 Interaction Patterns
Assuming that the mobile device is within the range of a VC, a complete

exemplary scenario is presented here, from the local registration of the shared
LSC services in the MPA, to the handling of the client request and the return of
the results (Fig. 3). The example functionality includes a Java class that returns
a Java image stored locally in the device, after scaling it to the specified size. A
further assumption to simplify this scenario is that this specific type of Image
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Figure 3. Invocation Interactions

service has already been aggregated. The example environment consists of a
VC proxy (in our example 79.69.101.2) where an Image Service Aggregator has
already been deployed in the Axis/Tomcat framework, under the relative URL:
/axis/services/aggregators/ImageAggregator, to make up the full Aggregator
endpoint address of:

http://79.69.101.2:8080/axis/services/aggregators/ImageAggregator.

A mobile device such as Sony Ericsson P990i (79.69.99.35), implementing the
Image Service, registers and contributes to the VC.

1. Registration of Local Services. The service provider specifies which
Java components to share. For each Java component, the server-side framework
(WS, RMI, or LSC), the implementation and interface classes, and an optional
human readable description must be specified (Fig. 4). Obviously, a relevant
container must be already running, for instance, the MicroServices framework
or Raccoon for WS, an RMI registry for RMI, or the LSC/TCP for plain Java-
based services. All service information is first validated and then stored locally
either as an XML file in the local file system, or using the Persistence J2ME API
for very limited devices. In this example, the Image Gather Java application
is registered as an LSC server-side component.During the local registration
process, the current possibly dynamic IP address of the device is not important
(the device can even be offline), while the LSC port defaults at 12345. The
endpoint invocation address of the Image service thus becomes:

lsc://79.69.99.35:12345/vclustercdc.ImageApp.ImageServer

2. Initialization of the MPA. When one or more services have been regis-
tered locally, the mobile user can initialize the MPA. MPA initialization involves
discovering and binding to a nearby VC proxy, and automatic activation of the
locally registered Java services. If this is the first time this MPA registers with
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Figure 4. The MPA GUI

a VC proxy, a new globally unique ID is generated and assigned to it for future
activations, in the form of: 9f941ea6-4579-30b2-96c4-f3a6812e60ce. Since
the Image service is hosted on the LSC, the latter is also initialized along with
the MPA. Initialization of the LSC is a two-step process: first, the Service
Registry is loaded from the permanent storage, and second, the Server Socket
Listener creates a local server socket on the designated port (12345), and starts
listening for service requests.

3. Automatic Activation of Local Services. Immediately after binding to
a VC proxy, the MPA activates and thus contributes the Image service (and any
other registered services). As already assumed, an Aggregator for the Image
service is already deployed in the VC proxy; otherwise, a new Aggregator is
generated to represent the Image interface. The Image service is bound to the
relevant Aggregator and is now ready to use.

4. Aggregator Method Invocation. A potential client connects to the repre-
sentative Aggregator and invokes the getImage method having no knowledge of
the Virtual Cluster and the underlying aggregated services. The communication
is facilitated with SOAP over HTTP in typical WS fashion. Programmatically
an Aggregator method invocation facilitating the Axis Dynamic Service Invo-
cation API could look like:

...
Call call = (new Service()).createCall();
call.setEndpointAddress(
"http://79.69.101.2:80/axis/services/aggregators/ImageAggregator");
Image img = (Image)call.invoke("getImage", new Object[] {640, 480});
...
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Alternatively, the client could use a portal framework, a web interface, or some
other grid submission software.

5. Aggregator Processing. The Aggregator acquires the mobile service’s
address and binding details from the VC platform component, and forwards the
method invocation to the Socket Request Translator (SRL). The SRL serializes
the method arguments into a plain byte array, and translates the request into the
LSC protocol format, before forwarding it to the Socket Communicator. The
method invocation translated in the LSC protocol format would look like:

LSC_INV|lsc://79.69.99.35:12345/vclustercdc.ImageApp.ImageServer
|getImage|3982746...<byte array of the parameters>

The Socket Communicator opens a client socket connection (in a random
available port, for instance 7008) to the LSC server socket (which listens on
79.69.99.35:12345) on the mobile device, and streams the translated request to
it.

6. LSC processing. The Server Socket Listener receives the TCP socket
stream in LSC format, and forwards it to the Service Request Handler (SRH).
The SRH validates the stream against the LSC protocol format, and, if valid, ex-
tracts the service name from the supplied URL, in this case:
vclustercdc.ImageApp.ImageServer, and the method name. The SRH then con-
sults the Service Registry to acquire the registered information for the specified
Java service, in order to dynamically recreate the method arguments from the
byte array. When the arguments have been recreated, a new instance of the
service class is created, and the requested method is invoked. The result of the
method invocation is then serialized back to a byte array, and forwarded to the
client end of the socket, in this case 79.69.101.2:7008.

7. Aggregator Returns. When the TCP stream with the result reaches the
Aggregator, the Socket Communicator closes the client socket connection (port
7008), and forwards the result to the SRT. The latter de-serializes the byte array
into the respective Java type, and returns. The client acquires the result from
the Aggregator in typical WS fashion.

8. MPA and LSC can be shut down if further sharing is not desired. The
mobile end user can easily shut down the MPA if no further contribution to the
VC is required. During shut down, the MPA de-activates the Image service by
informing the Active Index component of the VC proxy. Finally, the LSC shuts
down the server socket and frees up any allocated resources.

5. Evaluation
The evaluation of the LSC consists of two parts: performance or stress

testing, and resource requirements testing. For the performance testing, three
different devices where used as described in Table 1.
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Table 1. Experimental Environment Nodes Specification

Type Base Model Memory OS Server-side framework
Laptop A 2.2GHz Intel-based 1GB Win XP Tomcat/Axis, RMI, LSC
Laptop B 1.6GHz AMD-based 512MB Win XP Tomcat/Axis, RMI, LSC

PDA Sony P990i 128MB Win Mobile Microservices, RMI-OP, LSC

Figure 5. Comparison of WS, RMI, and LSC Single Invocation Performance

For each device, we tested the overall performance for invoking a simple
image transformation service method (image size 2048KB, scale factor 3:1)
facilitating all three available technologies – WS, RMI, and LSC/TCP. All
requests originated from a desktop client where the VC Proxy was installed.
Fig. 5 demonstrates the well-documented difference between WS and RMI
performance, but most importantly, the significantly better performance of the
LSC. This does not come as a surprise as generally sockets represent the fastest
possible communication method among the three, while the interoperability
and low-level programming restrictions are diminished with the use of the VC
Aggregator scheme. Clients or developers will never have to make direct use of
the LSC protocol. Instead it is meant to be accessed through the standards-based
Aggregators in the VC Proxy.

Regarding the storage requirements, a total disk space of approximately 76
KB is required, including 42 KB for the vcluster-mobile.jar component, 31 KB
for the LSC.jar component, 2 KB for the service-registry.xml component, and
1 KB for the startup scripts. This, however, does not include the RMI-Optional
Package, which is required for some non-functional aspects of the VC platform,
thus an additional 144KB is required to install the full package. The current
version of the VC platform implementation is publicly available.

Evaluating the memory requirements entails testing the MPA under two dif-
ferent states: running/passive and running/active. In the first mode, the MPA
and LSC have been bound to a VC proxy, but there are no pending requests.
In the active state, the LSC has received an invocation request and is currently
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Figure 6. MPA Memory Usage

executing a Java service. As can be seen in Fig. 6, when the MPA is in passive
mode it occupies a mere 2.8 MB of memory. On the other hand, the memory
overhead associated with translating a byte stream into a Java method invocation
request, and invoking the relevant Java service is 5.7 MB, and the total memory
usage in this case climbs up to 8.5 MB, a significant increase, albeit temporary
and well within the capabilities of resource-constrained devices. The P990i
we used in these experiments never became unresponsive, and coped very well
with all invocation requests.

6. Conclusions and Future Directions
The LSC is a lightweight performance-based container that is very easily

able to run on any number of pervasive and resource limited mobile devices
due to its small memory and storage requirements. To achieve this widespread
functionality, certain value-added features that are present in the core MPA have
been purposely left out of the LSC, such as the monitoring, dynamic service
discover, and activation features. Future research in this project is moving
towards the direction of enabling lightweight Peer-to-Peer mechanisms that
would facilitate the dynamic loading of extra modules into the LSC depending
on the capabilities of a given device. In this scenario, each client in the VC is
guaranteed to have a base functionality of those provided by any LSC, however,
if they are capable of performing more resource intensive operations, such as
sending and receiving notifications of neighborhood monitoring information,
or acting as a VC proxy, they would then be promoted on a need-based basis to
act as higher-level network participants.

The MPA complements the VC platform and consists of two distinct parts:
the core MPA that supports fundamental non-functional properties of the VC
platform, such as monitoring, dynamic service discovery and activation, and
the LSC that provides a lightweight and performance-oriented alternative to
standard containers (such as WS or RMI) suitable for resource constrained
devices. The properties, interface, usability, and evaluation of the LSC were
presented in detail in this paper.

The LSC framework manages to marry the high performance of low-level
TCP sockets with the interoperability of the standards-based Web Services
paradigm through the high-level interfaces of Aggregators. Furthermore, us-
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ability is ensured with a fully J2ME-compliant graphical interface to assist the
mobile service provider in selecting and exporting his services.

The resource requirements evaluation verified the suitability of the LSC
framework for even very limited devices, while the performance evaluation
puts it ahead of typical service hosting environments at approximately half
the cost of RMI interactions. In the context of the VC platform it presents a
performance-oriented container, albeit still interoperable through the Aggrega-
tor framework.
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Botanická 68a, Brno, Czech Republic

{xklusac, hanka}@fi.muni.cz

Ranieri Baraglia1 and Marco Pasquali1,2 and Gabriele Capannini1
1 ISTI - Institute of the Italian National Research Council,

Via Moruzzi 1, Pisa, Italy

{ranieri.baraglia, marco.pasquali, gabriele.capannini}@isti.cnr.it

2 IMT Lucca, Lucca institute for advanced studies,

Lucca, Italy

marco.pasquali@imtlucca.it

Abstract

This paper proposes a novel schedule-based approach for scheduling
a continuous stream of batch jobs on the machines of a computational
Grid. Our new solutions represented by dispatching rule Earliest Gap—
Earliest Deadline First (EG-EDF) and Tabu search are based on the idea
of filling gaps in the existing schedule. EG-EDF rule is able to build
the schedule for all jobs incrementally by applying technique which fills
earliest existing gaps in the schedule with newly arriving jobs. If no
gap for a coming job is available EG-EDF rule uses Earliest Deadline
First (EDF) strategy for including new job into the existing schedule.
Such schedule is then optimized using the Tabu search algorithm mov-
ing jobs into earliest gaps again. Scheduling choices are taken to meet
the Quality of Service (QoS) requested by the submitted jobs, and to
optimize the usage of hardware resources. We compared the proposed
solution with some of the most common queue-based scheduling algo-
rithms like FCFS, EASY backfilling, and Flexible backfilling. Experi-
ments shows that EG-EDF rule is able to compute good assignments,
often with shorter algorithm runtime w.r.t. the other queue-based al-
gorithms. Further Tabu search optimization results in higher QoS and
machine usage while keeping the algorithm runtime reasonable.

Keywords: Grid, Scheduling, Dispatching Rule, Local Search, Backfilling
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1. Introduction

The building of a Grid infrastructure requires the development and
deployment of middleware, services, and tools. At middleware level the
scheduler is central to efficiently and effectively schedule jobs on avail-
able resources. It should both maximize the overall resource utilisation
and guarantee nontrivial QoS for the user’s applications. The schedul-
ing problem has shown to be NP-complete in its general as well as in
some restricted forms. Moreover, to meet the QoS requirements of ap-
plications flexible scheduling mechanisms are required. A typical QoS
requirement is the time at which user wants to receive results, i.e., the
job turnaround time.

In the past, a lot of research effort has been devoted to solve both
static and dynamic job scheduling problems. Many of the proposed al-
gorithms, such as backfilling, are queued-based techniques. Current pro-
duction systems like PBS [7], Condor [21], LSF [23] or meta-scheduling
systems such as Grid Service Broker [22], GridWay [11] and Moab [6]
are mostly queue-based solutions. On the other hand, solutions using
schedule-based [10, 19] approaches are poorly investigated, in particular
to solve dynamic job scheduling problems [4]. In dynamic environments,
such as Grids, resource may change, jobs are not known in advance and
they appear while others are running. Schedule-based approach allows
precise mapping of jobs onto machines in time. This allows us to use
advanced scheduling algorithms [16, 8] such as local search methods [8]
to optimize the schedule. Due to their computational cost, these ap-
proaches were mostly applied to static problems, assuming that all the
jobs and resources are known in advance which allows to create sched-
ule for all jobs at once [2–3]. CCS [10] as well as GORBA [19] are
both advanced resource management systems that use schedule instead
of a queue(s) to schedule workflows (GORBA), or sequential and parallel
jobs while supporting the advanced reservations (CCS). GORBA uses
simple policies for schedule creation and an evolutionary algorithm for
its optimisation while CCS uses FCFS, Shortest/Longest Job First when
assigning jobs into the schedule and a backfill-like policy that fills gaps
in the constructed schedule. Both CCS and GORBA re-compute the
schedule from scratch when a dynamic change such as job arrival or ma-
chine failure appears. It helps to keep the schedule up to date, however
for large number of jobs this approach may be quite time consuming as
was discussed in case of GORBA [17]. Works [1] and [18] propose local
search based methods to solve Grid scheduling problems. The schedule
is kept valid in time without total re-computation, however no experi-
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mental evaluation was presented in [1], and [18] does include resource
changes but no dynamic job arrivals.

In this paper we propose novel schedule-based solutions to schedule
dynamically arriving batch jobs on the machines of a computational
Grid. In comparison with other approaches [10, 19], we are using dis-

patching rule and local search in an incremental fashion [13]. It means
that current computed schedule can be used as the starting point for
building a new schedule after each job arrival. This leads to a reason-
able computational cost since the schedule is not rebuilt from scratch.
We propose a multi-criteria approach which is based on providing non-
trivial QoS to the end users, while satisfying the system administrators
requirements as well. User requirements are expressed by the objective
function focusing on maximising the number of jobs that meet their
deadline, while system administrators needs are expressed by a machine
usage criterion [5]. Moreover we developed an efficient method which de-
tects and fills existing gaps in the schedule with suitable jobs. It allows
us to increase both the QoS and machine usage by limiting fragmentation
of the processor time.

The feasibility of the solutions we propose has been evaluated by
comparing with a FCFS, an EASY backfilling, and a Flexible backfilling
algorithms. The evaluation was conducted by simulations with the Alea
simulator [12] using different streams of synthetically generated jobs.

2. Problem Description

In our study we consider a continuous stream of sequential or parallel
batch jobs, which arrive to the system and are placed into a single job
queue (FCFS, Easy and Flexible backfilling) or into the schedule (EG-
EDF, Tabu search). Each job J is characterized by a submission time
SubmitJ , which represents the time when the job arrives, a deadline
DeadlineJ , the number ReqJ of CPUs requested for its execution, an
estimation of its duration EstimatedJ , and a benchmark score BMm,
which represents the CPU speed of a machine m used for the time es-
timation. Precise J execution time for a specific machine m̄ is calcu-
lated as (EstimatedJ · BMm)/BMm̄. All the jobs are considered non-
preemptible.

The target architecture is a computational Grid made up of multi-
processor machines. Each machine m is characterized by a number Rm

of CPUs, and all CPUs within one machine have the same speed BMm.
Different machines may have different speeds and number of CPUs. Ma-
chines use the Space Sharing processor allocation policy which allows
parallel execution of k jobs on machine m if Rm ≥

∑

k

J=1
ReqJ .
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Various objective functions can be considered such as makespan or av-
erage flow time. Our scheduler aims to maximize both the resource utili-
sation and the number of jobs with the respected deadlines [5]. A higher
resource utilisation fulfills resource owner expectations, while a higher
number of non delayed jobs guarantees a higher QoS provided to the
users.

3. Applied Approaches

In this section we describe two different approaches we propose to
solve the considered job scheduling problem. First principles of queue-
based Flexible backfilling are explained. Next we focus on the schedule-
based solutions. They are represented by a dispatching rule, which is
used to create an initial schedule and Tabu search algorithm, which
optimizes the initial solution according to the objective function.

3.1 Flexible Backfilling

Flexible backfilling [20] is a variant of the EASY backfilling algorithm
which is an extension of the original backfilling algorithm [14]. In the
Flexible backfilling, a priority value P (J) is computed for each job J by
exploiting a set of heuristics. Each heuristics follows a different strategy
to satisfy both users and system administrator requirements.

After selection of the set of machines suitable to perform a job, the
priority value assigned to such job is the sum of the values computed by
each heuristics. In our study, to select the set of machines we considered
only the number of available processors on a machine. Priority values
are re-computed at scheduling events, which are job submission and
completion. We defined the following heuristics: Aging, Deadline, and
Wait Minimization.

Aging aims to avoid job starvation. For this reason higher scores
are assigned to those jobs which have been present in the queue for
a longer time. The value of the priority assigned to the job J is in-
creased as follows: P (J)+ = agefactor · age(J), where age(J) equals
to wallclock − SubmitJ and agefactor is a multiplicative factor set by
the administrator according to the adopted system management policies.
The value of the system wall-clock is represented by wallclock parameter
equal to the time when the heuristic is computed.

Deadline aims to maximize the number of jobs that terminate their
execution within their deadline. It requires an estimation of the job ex-
ecution time in order to evaluate its completion time with respect to the
current wall-clock time. The heuristic assigns a minimal value (Min)
to any job whose deadline is far from its estimated termination time.
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When the distance between the completion time and the deadline is
smaller than a threshold value (Max), the score assigned to the job
is increased in inverse proportion with respect to such distance. The
threshold value may be tuned according to the importance assigned to
this heuristics. Without loss of generality, in our work, when a job goes
over its deadline before it is scheduled, its updating priority value is
set to Min. Each job is scheduled on the first most powerful available
machine. Since jobs with a closer deadline receive higher priority, this
strategy should improve the number of jobs executed within their dead-
line. Let EstimatedJ to be the estimated execution time of job J , we
define:

NxtimeJ = EstimatedJ ·
BMm̄

BMm

ExtimeJ = Now + NxtimeJ

tJ = DeadlineJ − k · NxtimeJ

where BMm is the most powerful cluster machine m (optimistic predic-
tion), and BMm̄ is the power of the machine m̄ utilised to estimate the
execution time of J . NxtimeJ denotes the job’s estimated execution
time and ExtimeJ denotes the estimated termination time of the job
with respect to the current wall-clock (Now). tJ is the time from which
the job must be evaluated to meet its deadline (i.e., the job priority is
updated to consider its deadline too). k is a constant value fixed by the
installation, which permits us to overestimate NxtimeJ .

The value P (J) is increased by the Deadline heuristics according to
the following formula:

P (J)+ =











Min if ExtimeJ ≤ tJ

a(ExtimeJ − tJ) + Min if tJ < ExtimeJ ≤ DeadlineJ

Min if ExtimeJ > DeadlineJ

where a is the angular coefficient of the straight line passing through the
points (tJ ,Min) and (DeadlineJ ,Max).

Finally, Wait Minimization favors jobs with the shortest estimated
execution time. The rationale is that shorter jobs are executed as soon
as possible in order to release the resources they have reserved and to
improve the average waiting time of the jobs in the scheduling queue.
Let boostvalue be the factor set by administrator according to system
management policies and minext = min(EstimatedJ). The value of
P (J) is increased by the heuristics as follows:

P (J)+ =
boostvalue · minextJ

EstimatedJ
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In this paper the parameters used in Flexible backfilling were hand tuned
to following values: agefactor = 0.01, k = 2.0, max = 20.0, min = 0.1
and boostvalue = 2.0. At each scheduling event the value of P (J) for all
queued jobs is reset to zero and then these heuristics are applied for each
job to compute new P (J) values so that P (J) = Aging + Deadline +
Wait Minimization. Then the queue is sorted according to new P (J)
values and the backfilling procedure starts.

3.2 Earliest Gap—Earliest Deadline First Rule

In this section the proposed schedule-based approach Earliest Gap—

Earliest Deadline First (EG-EDF) dispatching rule is described. It
places a new submitted job into the existing schedule to built the sched-
ule incrementally. It permits us to compute a new job scheduling plan
saving running time for scheduling since the new plan is not re-computed
from scratch. To do this, it is necessary to choose a good place in the
schedule for the job being scheduled, otherwise resource utilisation may
drop quickly due to the gaps appearing in the schedule. A gap is con-
sidered to be a period of idle CPU time. A new gap appears in the
schedule every time the number of currently available CPUs by the ma-
chine is lower than the number of CPUs requested by a job. In such
situation job has to be placed in the schedule to a time when a suffi-
cient number of CPUs is available. Gaps can also appear when there are
more CPUs than required by the jobs. They generally lead to processor
fragmentation which results in a bad system utilisation.

In order to reduce the processor fragmentation, we developed a method
that is able to optimize the schedule by placing the jobs into existing
gaps. It is a key part of EG-EDF rule which works in the following way.
Suppose a new job J arrives to the system. Using the existing schedule
the Earliest Gap (EG) suitable for J is identified for each machine. Let
S denotes the number of found EGs (S ≤ # of Machines). We con-
sider three different cases: S ≥ 2, S = 1, and S = 0. S ≥ 2 means there
is more than one EG for the job assignment. A weight is computed for
each assignment of J to EG according to Equation 1, and the EG with
the highest weight is chosen. The weight function is defined as:

weight = weightmakespan + weightdeadline (1)

weightmakespan =
makespanold − makespannew

makespanold

weightdeadline =
nondelayednew − nondelayedold

nondelayedold
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Here the makespanold is the expected makespan1 of the current sched-
ule, makespannew is the makespan of the new schedule. nondelayedold

and nondelayednew are the number of jobs executed within their dead-
line before and after the job assignment, respectively.

S = 1 simply means there is just one EG for the job J and this is
used for the job assignment. S = 0 means there are no suitable gaps.
In such case the job is placed into each machine’s schedule according to
the Earliest Deadline First (EDF) strategy. Each of these assignments
is evaluated separately and the one with the highest weight is accepted.

3.3 Tabu Search

Although EG-EDF rule is trying to increase the machine usage and
also to meet the job deadlines by finding suitable gaps, it only manip-
ulate with the newly arrived job. The previously scheduled jobs are
not considered by EG-EDF rule when building a new schedule. In such
case many gaps in the schedule may remain. To reduce their effect, we
propose a Tabu search [9] optimization algorithm which increases both
machine usage and the number of jobs executed respecting their dead-
line. It only works with jobs prepared for running—jobs already running
are not affected since the job preemption is not supported.

Tabu search selects the last job from the schedule of a certain machine,
which has the highest number of delayed jobs. Such job must not be in
the tabu list to prevent cycling. The tabu list contains jobs that were
selected in previous iterations. It has limited size and the oldest item
is always removed when the list becomes full. Selected job is put into
the tabu list and then the method for finding the Earliest Gap (EG) for
this job in a specific machine’s schedule is executed. If suitable EG is
found the job is moved to it and the weight value is computed according
the Equation 1. If weight > 0 the move is accepted since it improves
the quality of current schedule, makespanold and nondelayedold values
are updated, and a new iteration is started. Otherwise, the move is not
accepted, the job is not moved, and next machine’s schedule is used to
find an EG for this job. If none of the remaining machines has a suitable
gap in its schedule, a new iteration is started by selecting a different job,
since the previous choice is now banned by the tabu list. It can happen
that the machine with the highest number of delayed jobs contains only
jobs present in the tabu list. Then the machine with the second highest
number of delayed jobs is selected. The process continues until there are
no delayed non-tabu jobs or the upper bound of iterations is reached.

1
Makespan is the completion time of the last job in the schedule.
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4. Experimental Evaluation

In order to verify the feasibility of the EG-EDF and Tabu search
solutions, some experiments have been conducted. The evaluation was
performed by comparing our solutions with FCFS, EASY backfilling
(Easy BF), and Flexible backfilling (Flex. BF). Concerning the Flex. BF,
job priorities are updated at each job submission or ending event and
the reservation for the first queued job is maintained through events.
We used our Alea Simulator [12], which is an extended version of the
GridSim toolkit. The evaluation was conducted by simulations using five
different streams of jobs synthetically generated according to a negative
exponential distribution with different inter-arrival times between jobs
[5, 20]. According to the job inter-arrival times a different workload is
generated through a simulation. Smaller this time is, greater the system
workload is. Inter-arrival times were chosen in a way that the available
computational power is able to avoid the job queue increasing when it
is fixed equal to 5. Moreover, each job and machine parameter was
randomly generated according to a uniform distribution2.

The experimental tests were conducted by using a Grid made up of
150 machines with different CPU number and speed, and 3000 jobs.
Job scheduling plans were carried out by exploiting the Space Sharing
processor allocation policy, and both parallel and sequential jobs were
simulated—up to now parallel jobs are always executed on only one ma-
chine with a sufficient number of CPUs. In order to obtain stable values,
each simulation was repeated 20 times with different job attributes val-
ues. The experiments were conducted on an Intel Pentium 4 2.6 GHz
machine with 512 MB RAM.

To evaluate the quality of schedules computed by EG-EDF rule and
Tabu search, we exploited different criteria: the percentage of jobs exe-
cuted do not respecting their deadline, the percentage of system usage,
the average job slowdown, and the average algorithm runtime.

The system usage was computed at each simulation time by using the
following expression:

System usage =
# of active CPUs

min(# of available CPUs, # of CPUs requested by jobs)

It permits us to not consider situations when there are not enough
jobs in the system to use all the available machines. It happens at the
beginning and at the end of the simulation.

2
Following ranges were used: Job execution time [500–3000], jobs with deadlines 70%, number

of CPUs required by job [1–8], number of CPU per machine [1–16], machine speed [200–600]
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4.1 Discussion

In Figure 1 (left) the percentage of jobs executed not respecting their
deadline is shown. As expected, when the job inter-arrival time in-
creases, the number of late jobs decreases. Moreover, it can be seen
that both EG-EDF rule and Tabu search produced much better solu-
tions than Flexible backfilling, Easy backfilling, and FCFS. Tabu search
outperforms all the other algorithms. In particular, it obtains nearly
the same results of EG-EDF rule when the system contention is low
(job inter-arrival time equal to 5). In Figure 1 (right), the percentage of
system usage is shown. Schedule-based algorithms are, in general, able
to better exploit the system computational resources. However, when
there is not contention in the system the solutions we propose obtained
worse results than the other ones. When the available computational
power is able to avoid the job queue increasing, the Tabu search and
EG-EDF solutions do not improve, or improve very little, the previous
schedule. In this situation, the schedule-based approach is less effective
concerning the resource utilisation. In such situation the schedule is al-
most empty so a newly arrived job is often immediately executed on an
available machine, therefore the Tabu search has a very limited space
for optimization moves.

Figure 1. Average percentage of delayed jobs (left) and system usage (right).

Figure 2 (left) shows the average scheduling times spent by the sched-
uler for conducting the tests on the simulated computational environ-
ment. It is computed by measuring the scheduling time at each schedul-
ing event. The runtime of FCFS is very low w.r.t. to Easy and Flexi-
ble backfilling for which it grows quickly as a function of the job queue
length. Although the Flexible backfilling has to re-compute job priorities
at each scheduling event, and then has to sort the queue accordingly, it
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Figure 2. Average algorithm runtime (left) and the average job slowdown (right).

causes minimal growth of its run time compared to the Easy backfilling.
This is due to the application of an efficient sort algorithm.

Local search based algorithms are often considered to be very time
consuming. Our implementation, which exploits an incremental ap-
proach based on the previously computed schedule, is able to guarantee
a shorter and stable execution time w.r.t. the other algorithms. In par-
ticular, EG-EDF rule is fast and it always generates acceptable schedule,
so we can stop Tabu search optimization at any time if prompt decisions
are required.

Figure 2 (right) shows the average job slowdown. It is computed as
(Tw + Te)/Te, with Tw the time that a job spends waiting to start its
execution, and Te the job execution time [15]. This shows us how the
system load delays the job execution. As expected, greater the system
contention is, greater the job slowdown is. In this case the better results
are obtained by Tabu search, which are enough close to those obtained
by the Flexible backfilling algorithm.

5. Conclusion and Future Work

Both Flexible backfilling and schedule-based algorithms demonstrated
significant improvement when decreasing the number of late jobs while
keeping the machine usage high. This would not be possible without
the application of effective gap-filling method in case of the schedule-
based algorithms. Tabu search algorithm proved to be more successful
in decreasing the number of delayed jobs over Flexible backfilling—on
the other hand precise job execution time was known in this case so
the advantage of schedule-based solution took effect. The incremental
approach used in the schedule-based solutions allowed to keep the al-
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gorithm runtime stable and low. From this point of view both Easy
and Flexible backfilling are more time consuming since their runtime is
growing with the size of the queue more quickly.

In the future we would like to include job execution time estimations
to study their effect on the performance of schedule-based methods. Usu-
ally this is not a crucial issue for the queue-based algorithms because
they are designed to deal with dynamic changes. However, the schedule-
based approach relies on the precision of execution time prediction much
more. We expect that some changes will have to be done when the es-
timates will not meet the real job execution time. It is probable that
in such situation local change or limited rescheduling will be necessary.
Also, we would like to introduce failure tolerance and investigate job
preemption and job migration effects. Next we plan to compare these
solutions with other scheduling techniques such as Convergent Schedul-
ing [5].
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1. Introduction
Decentralization is a key feature of any architectural part of the grid, a sys-

tem that is crossing organizational boundaries [7]. Nevertheless, standard ap-
proaches to scheduling, both theoretical and practical, concern mainly cen-
tralized algorithms. In large-scale grids, the centralized approach is clearly
unfeasible. Firstly, centralized scheduling requires accurate, centralized infor-
mation about the state of the whole system. Secondly, sites forming the grid
maintain some level of autonomy, yet classic algorithms implicitly assume a
complete control over individual resources.

We model the grid as an agreement to share resources between independent
organizations. An organization is an entity that groups a computational resource
(a cluster) and a group of users that submit jobs. Each organization, by granting
access to its resource, in return expects that its jobs will be treated fairly in the
system.

In the paper, we compare two classes of scheduling algorithms, centralized
and decentralized. In centralized scheduling, one grid scheduler maintains a
complete control over the clusters. All the jobs are submitted through the
grid scheduler. In contrast, in decentralized scheduling, organizations maintain
(limited) control over their schedules. Jobs are submitted locally, but they can be
migrated to another cluster, if the local cluster is overloaded. The possibilities
of migration are, however, limited, so that migrated jobs do not overload the
host system.

The aim of this paper is to compare performance centralized and decentral-
ized scheduling algorithms. Using GSSIM simulation environment, we perfom
realistic simulation of example scheduling algorithms that use both approaches,
and compute various performance measures of jobs.

In literature, decentralization has two distinct meanings in grid systems,
composed of resources under different administrative domains [7]: the decen-
tralization of the algorithm or the decentralization of the optimization goals.
A decentralized algorithm does not need complete, accurate information about
the system. An algorithm with decentralized goals optimizes many perfor-
mance measures of different stakeholders of the system. Classic scheduling
algorithm are centralized algorithms that optimize a centralized goal, such as
the average completion time of jobs or the makespan. Such scheduling prob-
lems have been thoroughly studied, both theoretically [2] and empirically [6].
Decentralized algorithms optimizing decentralized goals include mainly eco-
nomic approaches [3]. Decentralized algorithms optimizing system-level goal
include e.g. [11], that proposes a load-balancing algorithm for divisible task
model. Finally, in optimization of decentralized goals with a centralized algo-
rithm, multi-objective algorithms are usually used [13, 10].
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The paper is organized as follows. The architecture of the scheduling system
and algorithms for centralized and decentralized implementations are proposed
in Section 2. Section 3 contains a description of GSSIM, the simulation envi-
ronment. Section 4 presents results of experiments.

2. Scheduling Algorithms
In this section we present the model of the grid and scheduling algorithms. In

the first case, we assume that there is a single grid scheduler while local sched-
ulers are not autonomous, i.e. they must accept decisions of a grid scheduler.
In the second approach, there is no central grid scheduler and local schedulers
are autonomous. However, they must obey certain rules agreed between orga-
nizations. In both cases, jobs come from users from considered organizations,
i.e. there are no external jobs. The next sections contains used notation and
details of algorithms.

2.1 Notation and the Model of the Grid
By O = {O1, . . . , ON} we denote the set of independent organizations

forming the grid. Each organization Ok owns a cluster Mk. By M we denote
the set of all clusters. Each cluster Mk has mk identical processors. Cluster
have different processing rates. The inverse ofMk processing speed is denoted
by sk.

The set of all the jobs produced byOk is denoted by Ik, with elements {Jk,i}.
By Jk we denote the set of jobs executed onOk’s clusterMk. If Jk,i ∈ Jk, the
job is executed locally, otherwise it is migrated. Job Jk,i must be executed in
parallel on qk,i processors of exactly one cluster Ml during pk,i · sl time units.
It is not possible to divide a job between two, or more, clusters. The system
works on-line. Jk,i is not known until its release date rk,i. Each job has a due
date dk,i.

In a schedule, by Ck,i we denote the completion (finish) time of job Jk,i.
Flow time of job Jk,i is defined as the total time the job stays in the system, i.e.
fk,i = Ck,i−rk,i. Tardiness lk,i of job Jk,i is defined as the difference between
job’s completion time and its due date lk,i = Ck,i − dk,i, if Jk,i is completed
after its due date (Ck,i > dk,i), or 0 otherwise.

Organization Ok, in order to measure the performance of its jobs Jk, com-
putes aggregated measures. In this work, we will consider sum-type aggrega-
tions, such as the sum of flow times Σifk,i, or the sum of tardiness Σilk,i, or
the number of late jobs Uk.

The performance of the system is defined as a similar aggregation over all
the jobs. For instance, system’s sum of completion times is defined as Σk,iCk,i.
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2.2 Centralized Scheduling Algorithm
This algorithm assumes that all the jobs in the system are scheduled by a

centralized Grid scheduler, that produces schedules for all clusters M. Each
organization must accept decisions of the Grid scheduler, which means that
Grid scheduler is the single decision maker and enforcement point within the
system.

The algorithm works in batches. This approach is motivated by a possibil-
ity of schedule optimization within a batch. In the worst case, on-line FCFS
policy may result in linearly increased makespan (compared to the optimal).
Moreover, FCFS prevents Grid scheduler from taking full advantage of avail-
able information. We applied the following approach for creating batches. We
introduced two parameters batch size s and batch length l. Batch size is a num-
ber of jobs that form a batch. Batch length is an amount of time between start
time of the last and first job in the batch. The current batch is scheduled if a
threshold related to any of these two parameters is achieved or exceeded, i.e. if
s ≥ S or l ≥ L. The size limit threshold prevents batches from being to large
while the length limit decrease delays of jobs waiting in the next batch. Use
of batches has also a practical justification. It causes that local schedules grow
more slowly which helps to react in case of failures or imprecise job execution
times. Some experimental studies on impact of batch sizes on the performance
can be found in [10].

The algorithm consist of two independent policies. The first policy defines
the order of jobs in a batch while the second determines the way job is assigned to
a given clusterMk. As the first policy the earliest due date (EDD) has been used.
This policy ensures that jobs within a batch are sorted by increasing deadline.
Every job Ji must be at position k such as that dj(k−1) ≤ di ≤ dj(k+1), where
j(k) denotes a number of a job at position k in a queue.

Jobs Ji from the queue are assigned to one of clustersM using a greedy list-
scheduling algorithm based on [8, 5]. To this end, the Grid scheduler queries
each organizationOk about a list of free slotsψki ∈ Ψk, ψki = (t′, t′′,mki), i =
1..|Ψ|. Parameters t′ and t′′ denote start and time of a slot, respectively. mki

is a number of processors available within the slot i at organization Ok. Slots
are time periods within which a number of available processors is constant.
The Grid scheduler sorts collected slots by increasing start time. The schedule
is constructed by assigning jobs in the Grid scheduler’s queue to processors in
given slots in a greedy manner. For each slotψkI (starting from the earliest one)
the scheduler chooses from its queue the first job Jj requiring no more thanmki

processors in all subsequent slots i ≥ I such as t′′ki ≥ t′kI + pj , which simply
means that jobs’ resource requirements must be met for the whole duration of
a job. If such a job was found the scheduler schedules it to be started at t′kI ,
and removes it from the queue. If there is no such a job, the scheduler applies
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the same procedure to the next free slot with a number of available processors
larger than the current one.

2.3 Distributed Scheduling Algorithm
The proposed algorithm consists of two parts. Most of the local jobs are

scheduled on the local machine with a list-scheduling algorithm working in
batches (Section 2.3.1). Moreover, the scheduler attempts to migrate jobs which
would miss their due dates when executed locally. Section 2.3.2 shows an
algorithm for handling such migration requests from the receiver’s point of
view. Although migration improves the performance of the originator, migrated
jobs can possibly delay local jobs, and, consequently, worsen the local criterion.
We solve this dilemma by introducing limits on the maximum total size of jobs
an organization must accept (as a result of the grid agreement), and, at the
same time, is able to migrate. These limits are proportional to the length of
the current batch multiplied by a cooperation coefficient ck, controlled by each
organization Ok.

2.3.1 Scheduling local jobs. Let us assume that the scheduling algorithm
was run at time t0 and returned a schedule which ends at t1. For each job
Jk,i released between t0 and the current makespan tmax, the algorithm tries
to schedule Jk,i so that no scheduled job is delayed and tmax is not increased
(conservative backfilling). If it is not possible, Jk,i is deferred to the next
batch, scheduled at tmax. However, if it caused Jk,i to miss its due date (i.e.
tmax +pk,isk > dk,i), the scheduler tries to migrate the job to other clusters, by
sending migration requests (Section 2.3.2). If clusterMl can accept Jk,i before
its due date, the job is removed from the local queue and migrated. If there is
more than one cluster ready to accept Jk,i, the earliest start time is chosen.

At tmax, a list scheduling algorithm schedules all the deferred jobs. Jobs are
sorted by increasing due dates (EDD). Then, jobs are scheduled with a greedy
list-scheduling algorithm [8, 5]. The schedule is constructed by assigning jobs
to processors in a greedy manner. Let us assume that at time t, m′ processors
are free in the schedule under construction. The scheduler chooses from the
list the first job Jk,i requiring no more than m′ processors, schedules it to be
started at t, and removes it from the list. If there is no such job, the scheduler
advances to the earliest time t′ when one of the scheduled jobs finishes. At
t′, the scheduler checks if there is any unscheduled job Jk,i that missed its
due date (i.e. t + pk,isk < dk,i, but t′ + pk,i > dk,i). For each such job
Jk,i, scheduler tries to migrate it, using the same algorithm as described in the
previous paragraph. The rest of the delayed jobs are scheduled locally.

After all the jobs are scheduled, Ol broadcasts the resulting makespan.
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2.3.2 Handling migration requests. Acceptance of a migration request
depends on the total surface of migrated jobs already accepted by the host in the
current batch, on the total surface of jobs already migrated by the owner and on
the impact of the request on the local schedule. Moreover, each organization
can control these parameters by means of cooperation coefficient ck (ck ≥ 0).

Assuming that the current batch onMk started at t0 and will finish at t1, until
the current batch ends, Ok is obliged to accept foreign jobs of total surface of
at most Lk = ck · (t1 − t0) ·mk. Moreover, Ok can reject a foreign job, if the
makespan of the current batch increases by more than ck · (t1 − t0). In order
to motivate Ok to declare ck > 0, any other organization Ol can reject Ok’s
migration requests, if the total surface of jobs exported by Ok in the current
batch exceeds Lk.
Ok is obliged to answer to foreign migration requests on-line. Let us assume

that, at time t′ (t0 < t′ < tmax), Ok receives a migration request for job Jl,i.
Ok can reject Jl,i straight away in two cases. Firstly, when the total surface of
the jobs migrated by the senderOl exceeds its current limitLl. Secondly, when
Ok has already accepted enough foreign jobs of surface of at least Lk.

Otherwise, Ok’s local scheduler finds the earliest strip of free processors
of height of at least ql,i and of width of at least pl,isk (an incoming, foreign
job never delays a scheduled job). If such a strip exists only at the end of
the schedule, Ok can reject Jl,i, if the makespan is increased by more than
ck · (t1 − t0). Otherwise, a positive response is returned to the sender Ol. If
Ol finally decides to migrate Jl,i, this decision is broadcasted so that all other
organizations can update the surface of Ol’s migrated jobs.

2.3.3 Setting the Cooperation Coefficient. Each organization Ok pe-
riodically broadcasts its cooperation coefficient ck, that specifies the organi-
zation’s desire to balance its load with other organizations. In general, larger
values of ck mean that more migration requests must be locally accepted, but
also more local jobs can be migrated. Consequently, ck value should depend
on the local load and on the observed load (by means of migration requests) of
other clusters. An algorithm for setting ck is beyond the scope of this paper.

In order to make the system more stable, the delay T between two broadcasts
of ck value for an organization must be strongly greater than the average batch
size.

3. GSSIM Simulation Environment
To perform experimental studies of models and algorithms presented above

we used the Grid Scheduling SIMulator (GSSIM) [9]. GSSIM has been de-
signed as a simulation framework which enables easy-to-use experimental stud-
ies of various scheduling algorithms. It provides flexible and easy way to de-
scribe, generate and share input data to experiments. GSSIM’s architecture
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Figure 1. GSSIM architecture

and a generic model enables building multilevel environments and using var-
ious scheduling strategies with diverse granularity and scope. In particular,
researchers are able to build architectures consisting of two tiers in order to
insert scheduling algorithms both to local schedulers and grid schedulers. To
enable sharing of the workloads, algorithms and results, we have also proposed
a GSSIM portal [1], where researchers may download various synthetic work-
loads, resource descriptions, scheduling plugins, and results.

The GSSIM framework is based on GridSim [4] and SimJava2 packages.
However, it provides a layer added on top of the GridSim adding capabilities
to enable easy and flexible modeling of Grid scheduling components. GSSIM
also provides an advanced generator module using real and synthetic workloads.
The overall architecture of GSSIM is presented in Figure 1.

In the centralized case, the main scheduling algorithm is included in a single
Grid scheduler plugin (Figure 1, grid broker interfaces). This plugin include
implementation of the algorithm presented in Section 2.2. The input of this
plugin consists of information about a queue of jobs in a current batch and
available resources. Local schedulers (resource providers in the right part of
Figure 1) can be queried about a list of time slots. The output of the Grid
scheduling plugin is a schedule for all clusters for the batch of jobs.

The implementation of the decentralized version of scheduling algorithm is
included exclusively within the local scheduling plugins. Plugins receive as an
input a queue of jobs, description of resources and the requests from other local
schedulers. Each plugin produces a schedule for its resource.

4. Experiments
This section contains a description of experiment defined using GSSIM.

The following subsections contain information about applied workload, how
scheduling components were modeled, and results
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4.1 Settings: Workload and Metrics
In our experiments, we decided to use synthetic workloads, being more

universal and offering more flexibility than the real workloads ([12, 9]).
In each experiment, n = 500 jobs are randomly generated. The job arrival

ratio is modeled by the Poisson process with λ either the same, or different for
each organization. A job is serial (qi = 1) with probability 0.25, otherwise qi
is generated by a uniform distribution from [2,64]. Job length pi is generated
using normal distribution with a mean value µ = 20 and standard deviation
σ = 20. Job’s due date di set to be d′i time units its release date. d′i is generated
by a uniform distribution from [pi ∗sS , 180] (pi ∗sS is the job’s processing time
at the slowest resource).

We used N = 3 organizations in the experiment. Each organization owns
a single homogeneous cluster. Clusters have 32, 64, and 128. For the sake of
simplicity we assumed that their relative processing speed identical.

In order to measure the performance of the system experienced by the users,
we used metrics such as the mean job flow time F̄ = (Σk,ifk,i)/n, and the
mean job tardiness L̄ = (Σk,ilk,i)/n. The tightness of a schedule for a cluster is

expressed by resource utilization R̄, defined as
ΣkΣi∈Jk

pk,iqk,i

Σkmk(tend
k

−tstart
k

)
, where tend

k =

maxiCk,i, and tstart
k = mini rk,i. Results may be often distorted by first and

last jobs that are executed when load of clusters is relatively low. In order to
avoid this inconvenience we did not consider within our results first and last
10% of jobs.

In order to check how equitable are obtained results for all organizations
we used the corresponding performance metrics for every single organization
Ok. Then we tested how disperse are these values by calculating the standard
deviation and comparing extreme values. We also compared the performance
metric of each organization to the performance achieved by local scheduling
algorithm, scheduling jobs on clusters where they are produced (i.e. it is the
same as decentralized, but with no migration). If there is no cooperation, local
scheduling is the performance each organization can achieve.

4.2 Results
We performed two series of tests, comparing centralized, decentralized and

local algorithm. Firstly, we measured system-level performance in order to
check how the decentralization of the algorithm infuences the whole system.
In this series of tests, we assumed that all the organizations have similar job
streams. Secondly, we compared the fairness proposed by algorithms when
organizations’ loads differ. Jobs incoming from overloaded clusters cannot
lower too much the performance achieved by underloaded organizations.
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Figure 2. Mean Flow Time for three strategies: centralized, distributed, and local

Figure 3. Mean Tardiness for three strategies: centralized, distributed, and local
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Generally, the decentralized algorithm schedules slightly worse than the cen-
tralized algorithm. However, migration considerably improved the results com-
paring to the local algorithm. This observation is valid especially for tardiness
as this criterion is used by a distributed algorithm to decide about job migra-
tion.Typical results of experiments comparing system-level performance are
presented in Figure 2 and 3 for mean flow time and tardiness, respectively. In
Figure 2 it is easy to notice that mean flow time of the distributed algorithm is
comparable to local strategy for low load. These poor results are caused by low
number of migrations since majority of jobs can be executed without exceeding
their due dates. This situation changes for higher loads when number of migra-
tions is increased and the distributed algorithm outperforms the local one. We
achieved similar results for different performance metrics and different sets of
parameters.

Figure 4. Influence of strategies on fairness of results

When clusters’ loads differ, the decentralized algorithm was able to increase
the fairness of results, by limiting the number of jobs that less-loaded clus-
ters must accept. Figure 4 presents typical results. In this case, performance
measures depend strongly on the collaboration factor ck of less-loaded clus-
ters. Strategies ’distr1’, ’distr2’, and ’distr3’ denotes distributed approach with
cooperation factors for organizations O1, O2, and O3 equal to (0.25, 0.25,
0.25), (0.2, 0.2, 0.3), and (0.1, 0.1, 0.5), respectively. When their ck is too
low the system as a whole starts to be inefficient, although the performance of
the less-loaded clusters is not affected. As it is illustrated in Figure 4 the total
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performance can be improved for certain values of ck, while mean flow time
of less-loaded clusters does not differ dramatically from the local ("selfish")
approach. Consequently, we consider that there must be some minimal value
of ck that results from a grid aggreement. As in real systems the job stream
changes, this minimal ck can be also interpreted as an “insurance” to balance
the load.

5. Conclusion and future work
In this paper we proposed an experiment to compare centralized and de-

centralized approaches to scheduling in grid systems. We have chosen two
extreme architectures. In centralized scheduling, the grid scheduler had total
control over resources. In decentralized scheduling, local schedulers main-
tained almost complete control over their resources, as each scheduler sets a
limit on the maximum migrated workload that it would have to accept. We have
proposed to compare these approaches using GSSIM, a realistic simulation en-
vironment for grid scheduling. The main conclusion from experiments is that
the decentralized approach, although slightly worse for the system-level perfor-
mance, provides schedules that are much more fair, especially for less-loaded
grid participants.

This work is a start of a longer term collaboration in which we plan to study
decentralized scheduling algorithms in context of organizationally-distributed
grids. We plan to extend the algorithms to support features or constraints
present in current grid scheduling software, such as reservations, preemption
or limitation to FCFS scheduling. We also plan to validate experimentally by
realistic simulation our previous theoretical work on this subject.
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Abstract The Data Grid is becoming a new paradigm for eHealth systems due to its enor-
mous storage potential using decentralized resources managed by different or-
ganizations. The storage capabilities in these novel “Health Grids” are quite
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manages data and metadata from Intensive Care Units. However, this paradigm
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required by legislations in many countries of the European Union and the world
in general. Taking into consideration underlying data protection legislations and
technological data privacy mechanisms, in this paper we identify the security
issues related with ICGrid’s data and metadata after applying an analysis frame-
work extended from our previous research on the Data Grid’s storage services.
Then, we present a privacy protocol that demonstrates the use of two basic ap-
proaches (encryption and fragmentation) to protect patients’ private data stored
using the ICGrid system.

Keywords: Data Grid, eHealth, Intensive Care Grid, privacy, security analysis.

1. Introduction

Modern eHealth systems require advanced computing and storage capabil-
ities, leading to the adoption of technologies like the Grid and giving birth to
novel Health Grid systems. In particular, Intensive Care Medicine uses this
paradigm when facing a high flow of data coming from Intensive Care Unit’s
(ICU) inpatients. These data needs to be stored, so for example data-mining
techniques could be used afterwards to find helpful correlations for the practi-
tioners facing similar problems. Unfortunately, moving an ICU patient’s data
from the traditionally isolated hospital’s computing facilities to Data Grids via
public networks (i.e. the Internet) makes it imperative to establish an integral
and standardized security solution to avoid common attacks on the data and
metadata being managed.

As mandated by current Data Protection Legislations [1], a patient’s per-
sonal data must be kept private because data privacy means eHealth trust,
therefore comprehensive privacy mechanism are being developed for the Health
Grid, harmonizing legal and technological approaches. To provide solutions it
is necessary to consider privacy from a layered point of view: legal issues
are the common base above which state-of-the-art security technologies are
deployed. In our previous research related with the security analysis of Grid
Storage Systems [2] we concluded that current technological mechanisms are
not providing comprehensive privacy solutions and worst of all, several secu-
rity gaps at the storage level are still open.

There is a clear need not only to identify the vulnerabilities associated with
Health Grids, but also for designing new mechanisms able to provide confi-
dentiality, availability, and integrity to the Data Grid in general. Towards this
end, the first part of the research presented in this paper shows the result of ap-
plying a security analysis framework (extended at the Foundation for Research
and Technology - Hellas) over an Intensive Care Grid scenario (the ICGrid
system developed by the University of Cyprus [3]); this has proven that the
greatest threat to patient’s privacy comes in fact from the Data Grid’s Storage
Elements, which are untrusted and may easily leak personal data. In an ef-
fort to cover these privacy gaps, the second part of this paper contributes with
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a low-level protocol for providing privacy to current Intensive Care Grid sys-
tems from a data-centric point of view, but taking into account the legal frame-
work and keeping compliance with high-level mechanisms. The contributed
protocol proposes the use of two basic mechanisms to enhance a patient’s data
assurance: cryptography and fragmentation.

The rest of this paper is organized as follows: Section 2 reviews the basic
terminology related with Intensive Care Medicine and the ICGrid system. The
basic underlying technological and legal security approaches for Health Grids
are presented in Section 3. Section 4 briefly presents and then applies the
security analysis framework to ICGrid’s data and metadata. Section 5 uses the
analysis’ results to introduce a privacy protocol proposed for ICGrid, able to
use encryption and fragmentation to protect a patient’s personal data at rest.
Finally, Section 6 presents our conclusions and future work.

2. The ICGrid system

In this Section we introduce the required background and the respective
terminology for Intensive Care Medicine, which is the basis of the ICGrid
system analyzed in this paper.

2.1 Intensive Care Medicine

An Intensive Care Unit (ICU) is the only environment in clinical medicine
where all patients are monitored closely and in detail for extended periods of
time, using different types of Medical Monitoring Devices (MMD). An MMD
may be defined as a collection of sensors that acquire the patients’ physio-
logical parameters and transform them into comprehensible numbers, figures,
waveforms, images or sounds. Taking clinical decisions for the ICU patients
based on monitoring can be a very demanding and complex task requiring thor-
ough analysis of the clinical data provided: even the most skilled physicians are

often overwhelmed by huge volumes of data, a case that may lead to errors, or

may cause some form of life threatening situation [4]. Providing systems that
actively learn from previously stored data and suggest diagnosis and prognosis
is a problem that, to our knowledge, has been overlooked in previous Intensive
Care Medicine research.

Traditionally, medical research is guided by either the concept of patients’
similarities (clinical syndromes, groups of patients) or dissimilarities (genetic
predisposition and case studies). Clinical practice also involves the application
of commonly (globally) accepted diagnostic/therapeutic rules (evidence-based

medicine [5]) as well as case-tailored approaches which can vary from coun-
try to country, from hospital to hospital, or even from physician to physician
within the same hospital. These different approaches in treating similar inci-
dents produce knowledge which, most of the times, remains a personal/local
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expertise, not documented in detail and not tested against other similar data.
Global sharing of this cumulative national/international experience would be
an important contribution to clinical medicine in the sense that one would be
able to examine and follow up implementation of and adherence to guidelines
as well as to get the benefit of sharing outstanding experience from physicians.

2.2 ICGrid: data and metadata architecture

Although a number of dedicated and commercially available information
systems have been proposed for use in ICUs [6], which support real-time data
acquisition, data validation and storage, analysis of data, reporting and chart-
ing of the findings, none of these systems was appropriate in our application
context. Another important issue with ICU is the need for data storage: an
estimate of the amount of data that would be generated daily is given in the
following scenario. Suppose that each sensor is acquiring data for storage and
processing at a rate of 50 bytes per second (it is stored as text) and that there
are 100 hospitals with 10 beds each, where each bed has 100 sensors. As-
suming that each bed is used for 2 hours per day, the data collected amounts
to 33.5275 GB per day. But this number only represents the data from the
sensors. Additional information includes metadata, images, etc.

Because Grids represented a promising venue for addressing the challenges
described above, the Intensive Care Grid (ICGrid) system [3] has been proto-
typed over the EGEE infrastructure (Enabling Grids for E-sciencE [7]). ICGrid
is based on a hybrid architecture that combines a heterogeneous set of monitors
that sense the inpatients and three Grid-enabled software tools that support the
storage, processing and information sharing tasks. The diagram of Figure 1 de-
picts the acquisition and annotation of parameters of an inpatient at an ICU Site
(bottom left) and the transfer of data replicas to two ICGrid Storage Sites. The
transfer comprises the actual sensor data, denoted as Data, and the information
which is provided by physicians during the annotation phase, denoted as Meta-

data. We utilize the notion of a Clinically Interesting Episode (CIE) to refer
to the captured sensor data along with the metadata that is added by the physi-
cian to annotate all the events of interest. Data and Metadata are transferred to
Storage Elements and Metadata servers (currently a gLite Metadata Catalogue
-AMGA- service [8]) respectively, so afterwards they can be accessed by all
the authorized and authenticated parties that will be entities of an ICGrid Vir-
tual Organization. About security, the sharing and collaborative processing of
medical data collected by different ICUs raises important privacy, anonymity,
information integrity challenges that cannot be addressed by existing commer-
cial ICU information systems. The rest of this paper overviews current security
solutions, along with our proposal for a comprehensive low-level privacy ap-
proach.
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Figure 1. ICGrid System Architecture. White rectangles represent different sites of the in-
frastructure (each site represents resources of one administrative domain/institution), shaded
rectangles represent computer nodes, and shaded ovals depict required Grid services and tools
of the ICGrid framework.

3. Health Grid Privacy: legal and technological aspects

As mentioned in Section 1, comprehensive privacy solutions for Health
Grids need the synergy of two different factors, legislation and technology.

3.1 Legal aspects

A major concern in eHealth is the confidentiality of the personal data that
are stored and managed electronically. The core component of many eHealth
systems is the Electronic Health Record (EHR), which is basically the patient’s
health record in digital format. Nowadays EHR protection is the focus of pri-
vacy legislations around the globe. In the European Union, several Directives
of the European Parliament and the European Council regulate the processing
and management of the EHR. The common foundation of all these initiatives
is the EU Directive on Data Protection [1], which provides the general frame-
work for the protection of privacy with respect to the processing of personal
data in its widest sense. The Directive concerns more than the protection of the
privacy of the natural persons, since it defines personal data as all data related
to an individual’s private, public, or professional life. However, the European
Working Party on Data Protection, which was established under article 29 of
the Directive [1] and comprises all national data protection authorities of EU
Member States, has recently acknowledged that some special rules may need
to be adopted for key eHealth applications.

A fundamental term referenced in current eHealth legislations is the con-
cept of consent, which is defined as any unambiguous, freely given, specific
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and informed indication of the patient’s wishes, with which she agrees to the
processing of her personal data. In other words, a patient’s consent enables

the legal processing of her EHR. However, what happens if, for instance, after
an accident the patient is unable to give her consent for accessing her personal
data at the Intensive Care Unit? Most of the legal issues and ambiguities re-
lated to eHealth regulations are being carefully studied. In the particular case of
the European Union, the European Health Management Association (EHMA)
along with the Commission established the “Legally eHealth” [9] project to
study these issues. This document defines the basic recommendations regard-
ing the protection of patients’ data, which can be used towards implementing a
comprehensive and harmonized technological solution as the one proposed in
Section 5.

3.2 Technological approach

Enforcing privacy of patient’s data in Health Grids have spawned the devel-
opment of a broad range of mechanisms. Two of these are particularly impor-
tant for our research because of their wide use: the Electronic Health Card and
the Grid Security Infrastructure.

The Electronic Health Card [10] is a new health card that stores basic pa-
tient data such as name, age, insurance details, and electronic prescriptions,
including also physical features to identify the owner, i.e. a photograph and
human-readable information. Basically this is a smartcard that stores informa-
tion in a microchip supporting authentication, authorization and even digital
signature creation, and will soon replace EU’s existing health insurance cards.
Data protection issues are critical in the design of Electronic Health Cards,
since they store sensitive personal data that must be as secure and confidential
as possible, while operating smoothly in practice. A comprehensive security
concept assures the protection of the sensitive data, so with few exceptions,
the health card can only be used in conjunction with an Electronic Health Pro-

fessional Card, which carries a “qualified” electronic signature (one that meets
strict statutory criteria for electronic signatures). Electronic Health Cards being
deployed in EU Member States represent a big step towards a citizen-centered
health system.

Along with the Electronic Health Card, Health Grids security is strength-
ened thanks to the Grid Security Infrastructure (GSI) [11] . This is a set of pro-
tocols, libraries, and tools that allow users and applications to securely access
Grid resources via well defined authentication and authorization mechanisms
relying on X.509 entity certificates, and XML-based protocols that retrieve se-
curity assertions from third-party services (i.e. the Virtual Organization Mem-

bership Service VOMS [12] used in EGEE).
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Despite their security features, Electronic Health Cards and GSI do not pro-
vide adequate confidentiality guarantees for the data at rest, as our security
analysis shows in the next Section.

4. Use Case: security analysis of ICGrid

From the point of view of a typical Health Grid system, its subsystems may
be attacked in several ways. Nevertheless, for the purposes of our research on
data privacy, the framework proposed in [13] and extended in [2] will be used
to pinpoint the main concerns linked with the security of its data and meta-
data. In a nutshell, the use of this framework consists of determining the basic
components related with the system’s security (players, attacks, security prim-
itives, granularity of protection, and user inconvenience), so that afterwards
they can be summarized to clearly represent its security requirements. As a
proof of concept, the security analysis in this Section will be performed in the
content of the Intensive Care Grid system (ICGrid) (introduced in Section 2),
considering also the underlying security mechanisms presented in Section 3.

4.1 Identifying the Elements for the Security Analysis

As mentioned at the beginning of this Section, the first step in our analysis
is to identify the elements that play a security-related role in ICGrid:

1 Players: four data readers/writers are involved (i) the ICU and Medical
Research sites that produce and consume the data; (ii) the EGEE Central
Services that perform VO authentication and authorization as mentioned
in Section 3.2; (iii) the EGEE storage facilities for data and metadata;
and finally (iv) the “wire” or WAN links (public and private) conveying
information between the other players.

2 Attacks: the generic attacks that may be executed over ICGrid are re-
lated with (i) Adversaries on the wire; (ii) Revoked users using valid
credentials on the Central Services during a period of time -while the re-
vocation data is propagated through the Grid-; and (iii) Adversaries with
full control of the EGEE storage facilities. Each one of these attacks
may result in data being leaked, changed or even destroyed.

3 User inconvenience: It is critical for IGGrid operation to have mini-
mum latencies when reading and retrieving the stored data and metadata
from the EGEE Site. Since smartcards -like the Electronic Health Card
explained in Section 3.2- are beginning to be introduced into National
Health Systems, it is feasible to consider that involved entities (i.e. pa-
tients and physicians) will require them for performing operations into
our Health Grid scenario.
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4 Security Primitives: Two security operations take place within the ICGrid:
(i) Authentication and Authorization via GSI-like mechanisms and, (ii)

Consent just as explained in Section 3.1.

5 Trust Assumptions: We assume that (i) the security tokens used for au-
thentication and consent (i.e. Electronic Health Cards) are personal, in-
transferable and tamper-resistant; (ii) EGEE Sites and/or ICU premises
have full control over the data and metadata stored on them; (iii) data
are encrypted on the public link thanks to secure functionalities (i.e. via
SSL); and (iv) the EGEE Central Services are trusted because they are
managed in a secure manner, therefore providing high assurance to its
operations.

4.2 Security Analysis Results

Based on the elements identified in the previous Section, Table 1 summa-
rizes the vulnerabilities identified in the ICGrid system. Results are catego-
rized by possible attacks (main columns) and types of damage – the Leak (L),
Change (C), Destroy (D) sub-columns. Cells marked with a “Y” mean that the
system (row) is vulnerable to the type of damage caused by this particular at-
tack. Cells marked with a “N” mean that the attacks are not feasible, or cannot
cause a critical damage.

Table 1. Summary of security issues related with ICGrid

Adversary

on the

wire

Revoked

user

w/Central

Service

Adversary

w/Storage

Site

Damage
L C D L C D L C D

ICGrid N N Y Y Y Y Y Y Y

From Table 1 we conclude that current Health Grid Authentication and Au-
thorization systems like the ones presented in Section 3.2 are unable to enforce
access control close to the Storage Elements and the data itself. In other words,
an attacker that bypasses these security mechanisms (by using a local account
with administrative privileges or by physical access to the disks) will have full
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control over the stored data. Unfortunately, merely using cryptography at the
Storage Elements is not a viable solution, and moreover imposes a significant
performance penalty. In the following Section, we introduce a protocol de-
signed to address these particular privacy concerns.

5. Protecting the patient’s personal data at-rest

Up to now we have seen that the most vulnerable and critical part of Health
Grid systems are the patient’s personal data while at-rest on the storage ele-
ments. State of the art distributed storage systems mostly rely on fragmenta-
tion1 ([15] and [16]), encryption ([17]) or even a mix of both ([18], [19] and
[20]) for enhancing stored data assurance. Our proposal is a low-level privacy
protocol that protects data and metadata from attacks targeting compromised
Storage Elements, while implementing data confidentiality and consent-like

mechanisms (in compliance with current Legislations), by using encryption
and fragmentation at the ICGrid Uploader (which uses functionalities of the
EGEE Storage Resource Manager -SRM- [21]).

Using the entities from ICGrid architecture (Figure 1), in Figure 2 we show
the messages exchanged with the proposed protocol when data and metadata
are being stored. Under this scenario the following steps will take place when
an IC-Annotator (ICA) is writing a patient’s private data file (D):

1
KPrivProd(H(D)).

This enforces non-repudiation, integrity and also provides the basis for
an “electronic” consent-like mechanism.

2 Upon reception of (EKPrivProd(H(D)),D), the ICGrid Uploader:

(a) Generates a nonce N and concatenates it to the received hash for
generating the symmetric encryption key H(D)+N.

(b) Uses the new key to symmetrically encrypt the data D, thus ob-
taining EH(D)+N (D). This provides patient’s data confidentiality,
therefore enforcing his right to privacy.

(c) Fragments EH(D)+N (D) into n-parts and disperses these to the
Storage Elements at the EGEE Sites.

(d) Sends via a secure channel (using GSI) the encryption key H(D)+N

to a VO Metadata Server hosted at the trusted EGEE Central Ser-
vices. This service can be seen as a Secure Key Store possibly
implemented in cryptographic hardware.

1In a fragmentation scheme [14], a file f is split into n fragments, all of these are signed and distributed to n

remote servers, one fragment per server. The user then can reconstruct f by accessing m fragments (m ≤ n)
arbitrarily chosen.

The ICA computes the hash H(D) and signs this with his private key (using
his Electronic Health Professional Card 3.2), that is E
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Figure 2. Privacy Protocol proposed to protect patient’s data within ICGrid

Correspondingly, when an IC-Researcher (ICS) tries to retrieve a data with
this protocol, the inverse sequence takes place, first of all using the ICGrid Up-
loader to defragment the encrypted file and then by securely retrieving the cor-
respondent encryption key from the Central Service’s Key Store. Encryption at
the ICGrid Uploader is a promising solution if security issues related with the
Key Store (high availability and protection of the symmetric key) and overall
performance can be achieved. However, new research lines also have begun to
analyze the performance gains that could be achieved if the untrusted Storage
Elements participate in the whole encryption scheme or, if the whole fragmen-
tation and encryption processes are performed by the trusted Key Store.

6. Conclusions

The computing and storage potential of the Grid are projected to play an
important role for implementing Health Grid systems, able to store and man-
age Intensive Care Units’ data. However, the deployment of production-level
Health Grids, such as the ICGrid system presented in this paper, should provide
assurances of the patient’s data, in particular when referring to personal infor-
mation, which is currently the subject of increasing concerns in most countries
in the European Union. Unfortunately, when personal data is being transferred
from the Hospital to the Grid new vulnerabilities may appear: on the wire,
at-rest, with the metadata servers, etc. As a first step on proposing a secu-
rity mechanism for Health Grids, in this paper we have performed a security
analysis of ICGrid’s data and metadata by applying a framework previously ex-
tended and used in Grid storage services. The results of the analysis show the
need to protect the system from untrusted Data sites, which have full control
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over the stored information, thus allowing its leak, destruction of change due
to successful external or even internal attacks. It is also worth highlighting that
our analysis takes into consideration the use of commonly deployed security
mechanisms. After the security analysis, our research focused on proposing a
privacy protocol able to protect the patient’s personal data at the Storage El-
ements with a combination of encryption and fragmentation. The contributed
protocol not only provides data confidentiality, but also integrity, high avail-
ability and a consent-like mechanism fully compliant with the legal and tech-
nological aspects discussed in this paper.

Our next steps include focusing on performance tests that will provide more
information about the optimal design of the privacy protocol presented in this

Uploader with encryption at Storage Elements. A second promising solution
refers to using the proposed Central Service’s Key Store for encryption and
fragmentation; this will greatly improve data assurance (encryption key are
never transferred through the network), however communication overhead may
become an issue. As future work we plan to base the design of the proposed
Key Store into the Hydra system [20], because it resembles our needs in its
application field (EGEE’s Health Grid) and uses similar security mechanisms.
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Abstract Production grids integrate today thousands of resources into e-Science plat-
forms. However, the current practice of running yearly tens of millions of
single-resource, long-running grid jobs with few fault tolerance capabilities is
hampered by the highly dynamic grid resource availability. In additional to re-
source failures, grids introduce a new vector of resource availability dynamics:
the resource sharing policy established by the resource owners. As a result, the
availability-aware grid resource management is a challenging problem for today’s
researchers. To address this problem, we present in this work GriS-Prophet, an
integrated system for resource availability monitoring, analysis, and prediction.
Using GriS-Prophet’s analysis tools on a long-term availability trace from the
Austrian Grid, we characterize the grid resource availability for three resource
availability policies. Notably, we show that the three policies lead to very differ-
ent capabilities for running the typical grid workloads efficiently. We introduce
a new resource availability predictor based on Bayesian inference. Last but not
least, using GriS-Prophet’s prediction tools we achieve an accuracy of more than
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1. Introduction

integrate into a single e-Science platform (tens of) thousands of resources pro-
vided by various owners. On these platforms, the typical grid workload com-
prises yearly millions of single-resource, long-running jobs, with few or even no
fault tolerance capabilities [8, 6]. However, the highly dynamic resource avail-
ability of the current grids [9, 4] increases for the typical workload the difficulty
of resource capacity planning and of scheduling. In traditional computing cen-
ters, a human administrator can respond to unavailability events usually after
they have occurred; often, on-line tools are employed to predict errors before
they occur [5, 19, 12]. In grids, human administration of the system would
be required for each participating resource owner, leading to unmanageable
costs of ownership. To build predictive tools, more knowledge is needed about
the characteristics of the grid resource avilability, and about the accuracy and
the overhead of on-line predictors. To this end, in this work we present Grid
reSource Prophet (GriS-Prophet), a system for resource availability character-
ization and prediction.

Similarly to other computing resources, grid resources may become unavail-
able due to failures in hardware, the operating system, or the middleware. In
addition, the grid resource owners may set different resource availability poli-
cies, from resources that are dedicated to grid use [9] to desktop grids [4] and
to resources that are available on-demand from computing centers. Currently,
there is no tool to characterize the resource availability in a grid system in which
the different resource availability policies coexist. To address this situation, we
design GriS-Prophet to characterize the grid resource availability per resource
availability policy.

The large number of resources present in grids increases the difficulty of
accurate on-line resource availability predictions. While several approaches
exist in the context of clusters [19, 12], it is unclear if they can be applied
directly in a grid context. Similar work in grids has recently begun [7], but
more research is needed before such approaches can be widely deployed. To
this end, we propose and implement in GriS-Prophet two methods from pattern
recognition and classification: Bayesian Inference [3] and the Nearest Neighbor

Predictor.
In this work in progress, our contribution is threefold:

1 We introduce the design of the GriS-Prophet, a system for resource avail-
ability characterization and prediction (Section 3);

2 Using GriS-Prophet on a long-term availability trace from the Austrian
Grid, we characterize the grid resource availability for three resource
availability policies (Section 4);

Today’s grids, e.g., CERN’s LCG [6], the TeraGrid [18], the Austrian Grid [17],
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3 We evaluate the use of two methods from pattern recognition and clas-
sification, and in particular of one based on Bayesian Inference, for grid
resource instance and duration availability predictions (Section 5).

We design and build different predictors that take advantage of different avail-
ability properties, and compare their effectiveness. We further investigate our
predictions by taking trace data of different past durations. Our results show
that more specific information is critical for better predictions. On average, we
are able to get more than 95% accuracy in our instance availability predictions
and more than 75% accuracy in duration predictions.

2. Related Work

Much research has been devoted to analyzing or modeling the resource
availability in multi-computers and supercomputers [16, 15], clusters of com-
puters [1, 15], pools of desktop computers [11, 14], cluster-based grids [9],
desktop grids [4], and even peer-to-peer systems [2]. However, none of these
efforts presents data for a system integrating supercomputers, clusters of com-
puters, and pools of desktop computers at the same time. Futhermore, much
of the related work uses few traces or traces from early systems, and needs
further research to confirm their findings. Iyer et al. [16] model the failures and
the resource availability for the Tandem multi-computer. Arguably the largest
study of a large computing environment to date, the work of Schroeder and
Gibson [15] characterizes 22 clusters and supercomputers from the LANL en-
vironment using data spanning 9 years. Closest to our work, Kondo et al. [4]
and Iosup et al. [9] analyze long-term traces from an enterprise desktop grids
and from cluster-based, respectively. The former uses two-minutes sampling
coupled with the execution of probe applications to collect availability informa-
tion from the system. The latter introduces cross-cluster resource availability
properties.

For resource availability prediction in computing systems, the many research
efforts have to date employed a wide variety of data mining techniques: time-
series analysis [12, 11, 13], rule-based classification [19, 12], Bayesian statis-
tics [12], signal processing [10], and hybrid models [7]. However, different
methods have been found to give better predictions for various data sets; in
particular, the Nearest Neighbor predictor (see Section refsec:predictions:nn)
gives surprisingly accurate availability state estimates [12, 10, 13, 7]. Sahoo et
al. [12] compare time-series analysis, rule-based classification, and Bayesian
networks to make accurate on-line predictions about system reliability parame-
ters and availability events. Mickens and Noble [10] and Ren et al. [13] predict
the resource availability over the next period of time, under the assumption of
the independence of failures across computing nodes.
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Figure 1. The GriS-Prophet Architecture.

For resource availability prediction in computing systems, the many research
efforts have to date employed a wide variety of data mining techniques: time-
series analysis [12, 11, 13], rule-based classification [12], Bayesian statis-
tics [12], signal processing [10], and hybrid models [7]. However, different
methods have been found to give better predictions for various data sets; in
particular, the Nearest Neighbor predictor (see Section refsec:predictions:nn)
gives surprisingly accurate availability state estimates [12, 10, 13, 7]. Sahoo et
al. [12] compare time-series analysis, rule-based classification, and Bayesian
networks to make accurate on-line predictions about system reliability parame-
ters and availability events. Mickens and Noble [10] and Ren et al. [13] predict
the resource availability over the next period of time, under the assumption of
the independence of failures across computing nodes.

3. The GriS-Prophet Architecture

In this section we present GriS-Prophet, an integrated system for resource
availability monitoring, characterization, and prediction. With GriS-Prophet,
we address two main goals: building a framework for resource availability
characterization in grids, and building a framework for resource availability
predictions in grids. For both goals, we focus on the concept of resource
availability policy, through which the resource owner can specify a dynamic
participation of the resource in the grid. Our framework can analyze the char-
acteristics for each resource availability policy, or for a class of related resource
availability policies. We also provide a generic prediction framework that takes
into account availability policies.
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Figure 1 depicts the GriS-Prophet architecture. The GriS-Prophet aggre-
gates resource availability characteristics for each of the resource classes de-
fined through the High Level Resource Availability Policies. The main input
for the system is the monitoring data concerning resource availability that is
provided by the Resource Monitoring System. The Resource Trace Character-
ization module analyzes these data based on the resource class, and extracts the
resource availability properties over time. The Resource Availability Modeling
module tries to model the main input data by fitting them against well-known
distributions, e.g., fitting the inter-arrival time between consecutive failures us-
ing the Weibull distribution [15, 9]. The Availability Pattern Recognition and
Classification module is a general toolbox of data mining tools that uses expert
knowledge about grid systems to provide fast and accurate predictions for grid
resource availability. Finally, the Resource Availability Comparison and Rank-
ing modules rank resources in the same class based on their suitability to run
jobs of different durations and fault-tolerance capabilities.

4. Resource Availability Characterization

In this section we characterize the availability of the Austrian Grid resources.
First, we present the Austrian Grid and the general characteristics of a long-term
availability trace taken from this environment. Then, we extract from this trace
the detailed characteristics for each of the resource availability policies used in
the Austrian Grid: the dedicated resources, the temporary resources, and the
on-demand resources. Finally, we propose a resource availability classification,
and a novel reliability metric specific to grids, the resource stability.

4.1 The Austrian Grid Resource Availability Trace

The Austrian Grid is a nation-wide, multi-institutional, -administrative and
-VO Grid platform, consisting of 28 grid sites geographically distributed in
Austria. Eeach grid site comprises multiple computational nodes; in total,
there are over 1500 processors in the Austrian Grid.

There are three availability policies in the Austrian Grids: the dedicated

resources, which are meant to be always available to the grid users for production
and experimental work, the temporary resources, which are resources belonging
to university laboratories that join the grid when powered and left idle by their
users, and the on-demand resources, which are made available to the grid only on
user demand and only for large scale jobs or experiments. We define a resource
class for each availability policy; for each resource class the class name is
identical to that of its associated availability policy. We argue that these classes
are most likely to be found in other grids; in particular, the dedicated resources
and the temporary resources correspond to traditional cluster-based grids [9]
and to desktop grids [4], respectively.
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Figure 2. The daily resource availability for the three resource classes in the Austrian Grid:
(left) dedicated resources; (middle) temporary resources; (right) on-demand resources.

We accessed, organized, and analyzed a long-term Austrian Grid resource
availability trace, from mid-June 2006 to mid-April 2007, for a total of 274 days.
The trace records availability information at intervals of 5 minutes; altogether
this trace comprises of more than 23 million events occurring in the whole
Austrian Grid. Each trace event represents the availability status of a grid
resource (i.e., available or unavailable) with the time stamp at which the status
of the resource is recorded. A resource is considered available if it is accessible
remotely, otherwise unavailable.

4.2 Time Patterns in Resource Availability

We first investigate the evolution of resource availability over time. Figure 2
shows the evolution over time of the daily resource availability for each resource
class from the Austrian Grid. On average, the resource availability in Austrian
Grid is 33%, with a minimum (maximum) of 4% (71%) per day. The dedicated
resources have the highest availability of 92% with a minimum (maximum) of
48% (100%) per day. The temporary resources collectively show a relatively
lower average daily availability of 47% with a minimum (maximum) of 0%
(92%) per day. The on-demand resources are the least available: on average
9% daily, with a minimum (maximum) of 0% (88%) per day.

We further analyze the patterns that occur in the resource availability time
series. We report the average availability of the three resource classes in the
Austrian Grid as a function of hour of the day (daily patterns) and day of the

week (weekly patterns). We have also investigates individual resources, as
opposed to resource classes, and found more patterns, sometimes even inverse
from the resource class patterns; the individual resource patterns are used by
the Resource Availability Comparison and Ranking module (see Section 3).

Figure 3 shows the daily resource availability patterns for the three resource
classes in the Austrian Grid. The resource availability peaks for all classes
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Figure 3. Daily resource availability patterns for the three resource classes in the Austrian
Grid: (left) dedicated resources; (middle) temporary resources; (right) on-demand resources.

Figure 4. Weekly resource availability patterns for the three resource classes in the Austrian
Grid: (left) dedicated resources; (middle) temporary resources; (right) on-demand resources.

during 10AM to 8PM. The dedicated resources show an additional peak between
2AM and 3AM, while the temporary resources show a high level of availability
during the night hours. The resource availability is minimal between 4AM
and 8AM, the time when most of the resources are turned off or automatically
restart. Figure 4 depicts the weekly resource availability patterns for the three
resource classes in the Austrian Grid. The peak is observed for all resources
from the middle to the end of the work days (i.e., Wednesday for on-demand
resources, Thursday for the other resource classes). This corresponds to the
typical grid users behavior patterns, where most of the work (job submission)
is done in the last half of the week.

4.3 Resource Availability Duration

We now look at the duration of resource availability. We define the life time

of a resource as the time period between two consecutive failures, and the life
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duration as the length of the life time. The distribution of life durations for a
resource class is critical for understanding the types of applications that class
can reliably service. Figure 5 shows the distribution of the life duration for the
three resource classes in the Austrian Grid. The dedicated, the temporary, and
the on-demand resources have on average a maximum life duration of 93495
minutes (65 days), 5275 minutes (4 days), and 1000 minutes (less than one
day), respectively. Over 50% of the dedicated resources have a life duration
over a day; by comparison, over 50% of the temporary (on-demand) resources
have a life duration below 6 hours.

4.4 Resource Availability Classification

Based on the results obtained for the time patterns in resource availabil-
itys, we propose four classes of resource availability: high, medium upper,
medium lower, and low. The four resource availability classes correspond re-
spectively to the daily availability percentage ranges (75%, 100%], (50%,75%],
(25%,50%], and [0%, 25%], and to the availability duration ranges (in hours)
(72,∞), (36, 72], (24, 36], and [0, 24].

By mapping the resources from each resource class are mapped to the re-
source availability classes, we are able to better understand how each resource

Figure 5. Lifetime distributions in three resource classes
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class can reliably service jobs of various durations. Table 1 describes the re-
source availability classes, and maps to them the three resource classes in the
Austrian Grid. Considering the daily availability, none of the dedicated re-
sources fall in the low category; in contrast, all on-demand resources fall in
this category. Most of the temporary resources (90%) have low availability.
Roughly 78% of dedicated resources are highly available during the day and
only 14% of their total are suitable for jobs longer than 72 hours. Most of
temporary and all of the on-demand resources are suitable for jobs smaller than
24 hours of duration.

Table 1. Resource classification based on their average availability duration within the resource
classes in Austrian Grid.

Percentage of resources
Res. classes Ded. Res. Temp. Res. on-Dem. Res.

High
daily avail.(75%, 100%]. 78.57 0 0

avg. dur. (72,∞)hrs. 14.28 10 0

Med. Upper
daily avail.(50%,75%]. 14.28 10 0
avg. dur. (36, 72]hrs. 35.71 0 0

Med. Lower
daily avail.(25%,50%]. 7.14 0 0
avg. dur. (24, 36]hrs. 50 0 0

Low
daily avail.[0%, 25%]. 0 90 100
avg. dur. [0, 24]hrs. 0 90 100

4.5 Resource Stability

We introduce in this section the resource stability, a new reliability metric
that defines the ability of a resource (or group of resources) to run multiple jobs
of a given duration. The motivation for this new metric is that while grid work-
loads are dominated both numerically and in terms of resource consumption by
groups of single-resource jobs, the core grid resource management middleware
(e.g., Globus GRAM) deals with each individual job in turn, incurring high
overhead (and, in turn, higher job wait time than expected for the remaining
jobs). Selecting one resource with high availability and running on it several
jobs of the same runtime characteristics is critical for achieving low overhead.
We define a job duration as the job’s uninterrupted run time, i.e., the run time of

the job if the job cannot use checkpointing, and the time between checkpoints
otherwise. Then, we define the stability of a grid resource r for a job duration
∆J as:

Sr(∆J) =
∑

i=1,n

⌊
∆ti

∆J
⌋ × P (∆ti)

where n is the number of life time periods for the resource r, the set of ∆ti are
the unique life durations for the resource r, and P (∆ti) denotes the probability
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of life duration ∆ti for the resource r. The integral term ⌊∆ti

J
⌋ counts the

number of jobs of duration ∆tk that can be run on resource r consecutively; for
∆ti < ∆J the count is 0.

Figure 6 depicts the resource stability for the three resource classes in the
Austrian Grid. The dedicated resources have the highest stability: on average
more than 8 times that of the the class with the lowest stability, the on-demand
resources. For job durations of 1 hour, the average dedicated resource can run
over 40 consecutive jobs; by comparison, the average temporary (on-demand)
resources can run 10(5) consecutive jobs.

5. Resource Availability Prediction

In this section, we present and evaluate parts of our resource prediction
framework.

Figure 6. Resource stability for the three resource classes in the Austrian Grid.

Figure 7. The auto-correlation function for the three resource classes in the Austrian Grid:
(left) dedicated resources; (middle) temporary resources; (right) on-demand resources.
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5.1 The Predictors

The autocorrelation functions of availability for the three resource classes are
shown in Figure 7. The wave like shapes of the curves indicate similar patterns
over time, and high value of autocorrelation for smaller lags (1-3) indicate that
the most recent values will yeild better predictions. To exploit the availability
features and patterns over time, we employ two methods from Pattern Recogni-

tion and Classification, the Bayesian Inference [3] and Nearest Neighbor pre-
dictor to serve resource instance or point availability and duration availability
predictions. Instance availability predictions describes resource availability at
the next monitoring instance, and the duration availability prediction describes
resource availability for the immediate next duration of a certain time span.

The bayesian inference (BI) enables estimating the possibility of an event
from its likelihood and prior probability as its probability conditional to its
characteristics. We first model resource availability with as either available or
unavailable. Then, we predict the resource availability using BI as follows.
Let σa and σu represent the two classes to which our resource state may be-
long. The prior probabilities P (σa),P (σu) are known from the characterization
phase, and can be calculated as . These can be calculated as P (σi) = Ni/N for
i = a, u, where N is the total number of events and Ni the number of number of
events for event that leads to state σi . We will use as specific BI features the avail-
ability features found in Section 4: x=[day of week,hour of day,hour of day &

day of week]. Then, p(x|σi) for i = a, u represents the class-conditional prob-
ability density functions (PDFs), describing the distributions of a feature vector
x for each BI feature. The class-conditional PDFs are also calculated from the
trace data during the characterization phase. Then according to BI:

P (σi|x) =
p(x|σi)P (σi)

p(x)
(1)

where p(x) is the PDF of x and for our resource availability model
p(x) =

∑

i=a,u
p(x|σi)P (σi). We consider one feature from the feature vector

x at a time, which can have any value from its feature space, e.g., {0, 1, 2, ..., 23}
for the feature "hour of day". In our case feature vector only takes discrete
values, thus the density functions p(x|σi) are equivalent to the probabilities
P (x|σi).

The Nearest Neighbor (NN) predictor is a well known pattern classification
technique, which selects the the nearest neighbor as a prediction for the current
location. To predict resource availability, the last monitored status is used
as the nearest neighbor [12, 10, 13, 7]. This method typically suits to the
machines with high MTBF(Mean Time Between Failure) and MTR(Mean Time
to Reboot).
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5.2 Resource Ranking

We now focus on the problem of resource ranking based on the predicted life
time duration. Let {γ1, ..., γm} be a set of m resources that can execute a job.
The loss function η(γi|σj) describes the loss incurred for selecting resource γi

when resource state is σj , computed as:

η(γi|σj) = T lγi
+ Tγk

− Tg(γi, γk)

where T lγi
represents the time lost on resource γi in case the resource fails

after selection, Tγk
represents total time (including overheads) taken to execute

job on next potential resource γk, and Tg(γi, γk) represents expected time gain
in selecting γi over γk.

Suppose that we select one property from the feature space x and the resource
γi. If the true state of the resource is σj but the predicted state is σi 6= σj then
we will incur a loss of η(γi|σj). Since P (σj|xi) is the probability that the true
state of the resource is σj , the expected loss with selecting resource γi is:

R(γi|x) =
∑

j=a,b

η(γi|σj)P (σj |xi)

In decision-theory terminology, an expected loss is called a risk; thus, we call
R(γi|xi) the conditional risk for selecting a resource property xi from fea-
ture vector x. Our objective is to minimize the overall risk that is given by
∫

R(γ(xi)|xi)p(xi)dx, where γ(xi) represents selection of resource γ when
feature xi is selected, d is our notation for d-space volume element and integral
intends over the entire feature space. To minimize the overall risk, we compute
the conditional risk for all the m resources and select resource γi for which
R(γi|xi) is minimum.

5.3 Experimental Results

We now present initial results of our work on resource availability predictions.
The work on resource selection risk analysis is in progress.

The first experiment evaluates the accuracy of the predictions for availabil-
ity instances, that is, for predicting the resource availability state at arbitrary
moments in time. We simulate the Austrian Grid environment based on the
availability traces taken from the Austrian Grid (see Section 4.1). For each of
the 274 days present in the Austrian Grid traces, and for every resource, we
make predictions for 24 moments of time, one for each hour where the minuts
and the seconds are selected at random. We define the daily prediction accu-

racy as the percentage of correct vs. incorrect predictions for one day, using
the traces as ground truth. Figure 8 depicts the daily prediction accuracy using
BI for three resource availability properties: hour-of-the-day, day-of-the-week
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and hour-of-the-day:day-of-the-week. The last predictor exhibits the best aver-
age accuracy: 97% for dedicated resources, and above 90% for temporal and
on-demand resources. The hour-of-the-day predictor showed the second best
accuracy for the three classes, with the day-of-the-week predictor proving to
be the least accurate (59% average accuracy for temporary resources). In com-
parison, the NN predictor achieves a higher accuracy for availability instance
predictions, of over 97% for all classes of resources, as shown by Figure 9.
In addition, the NN predictor never reacher a prediction accuracy below 55%,
while the BI predictor can lead to a prediction accuracy as low as 20%.

The second experiment evaluates the accuracy of the predictions for avail-
ability duration. We use the same setup as for the first experiment. For each
of the 274 days present in the Austrian Grid traces, and for every resource,
we evaluate the predictions for all the time durations between 10 minutes and

Figure 8. The daily prediction accuracy for availability instances using the BI predictor for
three availability properties: (left) hour of the day; (middle) day of the week; (right) combined
properties.

Figure 9. The daily prediction accuracy for availability instances using the NN predictor.
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24 hours in increments of 5 min. The accuracy for each prediction duration
was evaluated over 100 trials where the date and time of the prediction were
selected randomly. For the BI predictor, the likelihood and priori probabilities
were computed from the data in the time window before the prediction mo-
ment. Figure 10(a)(a) depicts the average accuracy of the availability duration
predictions using the BI predictor, for windows of size 7 to 50 weeks. The
prediction accuracy decreases as amount of historical data more distant from
the prediction moment is included while calculating prior probabilities, this
was also confirmed by investigating the auto-correlation function (ACF) of the
availability durations in the Austrian Grid traces. The best accuracy using the BI
predictor is achieved for windows of 7 weeks: 80%, 75%, and 69% accuracy for
dedicated, temporary, and on-demand resources, respectively. Figure 10(a)(b)
depicts the accuracy of availability duration predictions using the NN predic-
tor. The NN predictor yields better or similar results to the BI predictor for
dedicated and temporary resources, but exhibits lower accuracy and especially
lower minimum accuracy for the on-demand resources.

6. Conclusion and Future Work

The highly dynamic grid resource availability is due not only to resource
failure, but also to the sharing policy enforced by the resource owners: re-
sources may be dedicated to grid use, or become temporary part of the grid.
As a result, the typical grid workloads are difficult to manage efficiently. To
address this problem, we have introduced in this work GriS-Prophet, an in-
tegrated system for resource availability monitoring, analysis, and prediction.
The GriS-Prophet receives resource availability information, and transforms
it into useful predictions for the grid resource management systems. For this

(a) Average accuracy, BI predictor. (b) Accuracy over time, NN predictor.

Figure 10. The accuracy of duration predictions using the BI and the NN predictors.
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work in progress, we have first used the analysis tools on a long-term availabil-
ity trace from the Austrian Grid, and characterized the grid resource availability
for three resource availability policies. Notably, we have shown that the three
policies lead to very different capabilities for running the typical grid workloads
efficiently. We have also introduced a new resource availability metric, the re-
source stability, which characterizes the ability of a resource to execute groups
of jobs of a given duration; we argued that selecting resources based on this
metric will greatly increase the efficiency of the grid resource selection process.
For the GriS-Prophet prediction component, we have introduced a new resource
availability predictor based on Bayesian inference, and the notion of resource
selection risk. Compared with a predictor used often in resource availability
predictions, the Nearest Neighbor, we have shown that our new predictor can
deliver better accuracy for specific cases.

For the future, we plan to extend the predictors with traditional data mining
algorithms adapted to the grid resource availability data, and to follow our
investigation of novel metrics for grid resource availability. Last but not least,
we plan to research the optimization problem related to the notion of resource
selection risk.
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Abstract We present joint work between the University of Innsbruck and University of
Münster on targeting online games as a novel class of Grid applications, whose
user community (general public) is much broader than of contemporary scien-
tific Grids. Online games are a new, large, generic class of applications not yet
studied by the Grid community, with the following distinctive features in com-
parison to traditional parameter studies or scientific workflows: large number
of concurrent users connecting to a single application instance, frequent real-
time user interactions, negotiation and enforcement of precise Quality of Service
(QoS) parameters, adaptivity to changing loads and levels of user interaction,
and competition-oriented interaction between users, other actors, and services.

We develop a novel multi-layer, service-oriented architecture for executing
online games in a distributed Grid infrastructure. Firstly, scheduling and runtime
steering services assist the users in transparently connecting to game sessions
while maintaining certain levels of QoS. Secondly, resource allocation, monito-
ring, and capacity planning services allow efficient resource management that
removes the cost and scalability barriers in game hosting. Finally, a Real-Time
Framework (RTF) provides the fundamental technology for scaling game sessi-
ons to an increased number and density of users through real-time protocols and
a variety of parallelization and distribution techniques.
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1. Motivation

Within the last ten years, online gaming has become a dominant component
in the video game market. Every game genre has been impacted and even rede-
fined by the multiplayer network feature, completely transforming the players’
experience. This trend is developing further as all the hardware devices re-
leased on the market today have built-in network support and thus allow the
game developer to rely on network availability. In contrast to existing interac-
tive applications like those provided by Amazon and eBay exclusively oriented
towards business transactions, online games have severe realtime and scalabi-
lity requirements (like the minimum state update rate per second to all clients)
which makes them rather unique and yet to be studied by the Grid community.

The online game market is nowadays dominated by three classes of online
games: (1) Massively Multiplayer Online Role Playing Games (MMORPGs)

(e.g. Anarchy Online, Silkroad Online, World of Warcraft) are slow-paced ga-
mes with few thousands of players sharing one game session in a huge ga-
me world map; (2) First Person Shooter (FPS) (e.g. Counter Strike Source,
Battlefield 2142) are fast-paced action games that only scale to a few players
(maximum 64) due to the extremely frequent action processing and communi-
cation (up to 60 Hz) required for updating the state of each player in order to
experience a realistic environment; (3) Real-Time Strategy (RTS) games (e.g.
Command & Conquer, Starcraft) are comparatively fast-paced games that typi-
cally contain a high number of ongoing interactions in the game world. Users
usually have direct control over a huge amount of in-game objects, e.g. mili-
tary units, and can trigger actions on them that can cause interactions with a
lot of other in-game objects and consume a lot of bandwidth and processing
time. In this paper we present a novel multi-layer service-oriented architecture
as a platform that eliminates the following three main barriers which currently
hinder the scalability of online games.

Firstly, to improve the scalability of MMORPG game sessions, game devel-
opers and hosting companies currently divide the game world in zones (often
representing different realms) which are hosted on different machines. The zo-
nes are typically predefined and managed manually by the Hosters. The tran-
sition of a client between two zones is in general not a seamless action and
requires an important amount of waiting time. This solution has therefore the
same limitations as a monotonic environment, since the number of players wi-
thin one zone is still limited and cannot be extended. To address this limitation,
we propose a Real-Time Framework (RTF) providing the fundamental tech-
nology for dynamic on-the-fly scaling of game sessions to the user demands
through real-time protocols and a variety of novel parallelization and distri-
bution techniques. RTF is not limited to MMORPG games, but addresses the
more dynamic and harder to satisfy FPS and RTF games too.
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Secondly, the only significant attempts in terms of hosting to apply Grid
technologies to online games are the Butterfly.net [3] and BigWorld [1] envi-
ronments. Both are commercial Grid systems for MMORPGs which optimise
resource utilisation within a single data centre typically residing within the sa-
me local area network. However, because of this restriction, this solution is
subject to the same limitations as with any data centre as there is no way to
add substantially more resources if those assigned become insufficient. This
limitation has also negative economic impacts by preventing any but the lar-
gest hosting centres from joining the market which will dramatically increase
prices because those centres must be capable of handling peaks in demand,
even if the resources are not needed for much of the time. We propose in this
paper an architecture that uses the potential of the global Grid to provide on-
demand access to a potentially unbounded amount of cheap compute resources
connected to the Internet through three advanced middleware services: resour-

ce allocation, monitoring, and capacity planning.
Thirdly, current online game infrastructures are usually based on the best-

effort Internet protocol with no QoS support, which is needed for a smooth
and realistic experience. We provide scheduling and runtime steering services
to assist the users in transparently connecting to game sessions while enforcing
certain levels of QoS for the entire duration of the interaction through proactive
load balancing and session steering decisions.

We present our architecture design in Section 2, followed by implementation
and experimental results in Section 3. We conclude our paper with an outlook
into the future collaboration work in Section 4.

2. Architecture

Figure 1. The overall Grid architecture.

We designed a distri-
buted service-oriented
architecture depicted in
Figure 1 to support
transparent and scalable
access of an increased
number of users (com-
pared to current state of
the art) to existing onli-
ne gaming applications.
The architecture is ba-
sed on the interaction
of four main actors. (1)
End-user is the game
player that accesses the
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online game sessions through graphical clients, typically purchased as a DVD;
(2) Scheduler is an intermediary that negotiates on behalf of the end-user
appropriate game sessions based on the user-centric QoS requirements (e.g.
connection latency, game genre, friends, expertise); (3) Hoster is an organi-
sation (e.g. Universities of Innsbruck and Münster in the current project) that
provides some computational and network infrastructure for running game ser-
vers; (4) Resource broker provides a mechanism for application Schedulers
and Hosters (and possibly other actors) to find each other in a large-scale Grid
environment and negotiate QoS relationships.

2.1 User layer

The user layer consists of the end-user game application which should be
simple and easy to install and manage. One important requirement is that the
Grid middleware must not add additional complexity to existing game instal-
lation procedures based on a DVD purchase and several mouse clicks. Rather,
we aim at simplifying today’s process of initiating and connecting to online ga-
me sessions, such that the user no longer needs to memorise and edit IP server
addresses or manually edit custom configuration files.

2.2 Scheduling layer

The scheduling layer developed by the University of Innsbruck is where the
different interactions between the actors are supported. Apart from an off-the-
shelf Resource Broker [4] that we integrated into the environment for resource
discovery, we designed two novel services as part of this layer.

2.2.1 Scheduling service. The Scheduler receives from the user specific
QoS requirements which can be performance-related (e.g. maximum latency,
minimum bandwidth, minimum throughput) or game-specific (e.g. game gen-
re, minimum number of players, difficulty, tournament planning). Our Schedu-
ler goes beyond the current state-of-the-art practice in scientific computing (i.e.
centralised best-effort optimisation of single application-specific metrics), by
negotiating with several distributed Hosters multiple and often contradictory
(from each actor’s perspective) QoS requirements (e.g. execution time versus
computation cost) to be maintained during execution.

The mapping of players to game servers, as well as the allocation of Hoster
resources to game servers, takes place as a distributed negotiation between the
Scheduler and Hosters, each of them trying to optimise its own specific metrics
expressing individual interests. While the Scheduler purely negotiates in terms
of users-centric QoS parameters, the Hosters try to selfishly optimise metrics
related to their own and often contradicting interests such as maximising re-
source utilisation or income. A centralised Scheduler, as typically approached
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in the scientific Grid community, is therefore not a feasible solution in such
a distributed non-collaborative environment. Rather, we approach the problem
using game theory [8], where a number of parties having different objectives
and utility functions negotiate using cooperative or non-cooperative techni-
ques, possible enhanced with auctioning or bargaining models. It is proven that
such theories converge to a Nash equilibrium that represents a balance between
risks and rewards for all participating parties. The result of the negotiation pro-
cess is a performance contract that the Scheduler offers to the end-user and
which does not necessarily match the original QoS request. The user has the
option to accept the contract and connect to the proposed session, or reject it.

2.2.2 Runtime steering service. There may occur factors during the
execution of a game session which affect the performance, such that the ne-
gotiated contracts are difficult or impossible to be further maintained. Typi-
cal perturbing factors include external load on unreliable Grid resources, or
overloaded servers due to an unexpected concentration of users in certain “hot
spots”. The steering service interacts at runtime with the monitoring service of
each Hoster in the management layer for preserving the negotiated QoS para-
meters for the entire duration of the game session. Following an event-action
paradigm, a violation of a QoS parameter triggers appropriate adaptive steering
or rescheduling actions using the API provided at the real-time layer.

The QoS parameters of online games to be enforced may be of two kinds:
(1) Client-related QoS parameters include requirements between the local

game client and the remote server such as latency and bandwidth constraints
collected by special sensors embedded in the client application (hidden to the
end-user) that monitor the traffic on the real-time connection links. Upon vio-
lation of these requirements, users will be transparently migrated to new game
servers (of the same distributed session) that maintain the original QoS para-
meters negotiated by the Scheduler.

(2) Game session-related QoS parameters include application-specific re-
quirements such as efficient use of Grid resources, maximum load, or proper
load balancing. Typical game session-related steering actions are: starting a
new game server (potentially at a different Hoster site) for distributing the user
load of an overloaded session; load balancing by migrating users between ga-
me servers within one or across several Hosters; switching-off underutilised
game servers (after migrating the users) for improved resource utilisation; or
cloning game servers upon critical QoS values to hide user migration latencies.

All of these actions must be performed transparently from the user’s point
of view who should not notice any change or experience minimum delay in the
execution environment. To meet this challenge, we consider defining perfor-
mance contracts based on fuzzy logic [11] (rather than based on exact boolean
variables) that allows one to linguistically state smooth transitions between are-
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as of acceptance and violation. The user can express the contracts by defining
a membership function with the following signature: µ : R → [0, 1], where R

denotes the set of real numbers (representing performance values such as cur-
rent user load). A very simple membership function could be a step function
with three linguistic values: fulfil (indicating proper execution), critical (indi-
cating that the contract is in danger and needs steering), and violate (when the
contact has already been broken). Fuzzy logic is a powerful technique that will
provide flexibility in performing proactive steering actions before the actual
contracts are violated, for example through anticipated migration or cloning
when the load of the game sessions enters a critical stage.

2.3 Resource management layer

The resource management layer, mostly developed by the University of
Innsbruck (apart from monitoring developed in Münster), focuses on the deve-
lopment of generic Grid management services within each Hoster, while de-
aling with the challenges raised by the main requirements of online games:
scalability to thousands of online user connections, optimised allocation of
resources, and monitoring and steering to maintain the QoS parameters in dy-
namic environments like the Grid. The traditional way of allocating resources
in a Grid environment employs opportunistic matchmaking models based on
runtime resource requests and offers [9], which are known to converge to local
minima as we demonstrated in previous work on scientific workflows [4]. We
improve on the state of the art by designing a management layer consisting of
three services described in the following.

2.3.1 Resource allocation. Typically, each Hoster in the management
layer owns one Resource Allocation service responsible for allocating local
resources to a large number of connecting clients. The Resource Allocation
service receives from the Scheduler connection requests formulated in terms
of QoS requirements such as minimum latency, maximum bandwidth or ma-
ximum load, and returns either a positive answer if it can accommodate the
client, or a negative answer otherwise.

It is important to notice that, for online games, the resource allocation pro-
blem is significantly different than in scientific computing. Scientific applica-
tions are typically owned by single users and consist of a set of computatio-
nally intensive jobs to be mapped to individual processors. Online games, in
contrast, are characterised by a large number of users that share the same app-
lication instance and interact within the same or across different game servers.
The atomic resource allocation units for users are, therefore, no longer coarse-
grain processors, but rather fine-grained threads and memory objects, which
are obviously harder to address and more sensitive to external perturbations.
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2.3.2 Monitoring. High-level monitoring services implemented by the
University of Münster are aiming at observing the QoS parameters previously
negotiated by the Hoster as performance contracts which must be preserved
throughout the user’s participation in the game session. Several monitoring pa-
rameters are summarized in particular profiles. To support a wide range of ga-
me types, we distinguish between two different types of profiles: basic profiles
common to all games, and the custom profiles which allow the compilation of
customised parameter sets adapted to the requirements of any particular game.

The basic profiles, already developed and implemented by the University of
Münster, support monitoring of low-level QoS parameters, as well as of game-
related metrics crucial for guaranteeing an adequate game play experience to
the users. The system profile and network profile contain generic low-level sy-
stem parameters which do not depend on the game inner state and represent
an assessment of the game server resource use. The entity model profile, cli-

ent data profile, and game world profile monitor information related to internal
game mechanisms like entity positions, messages sent or received, or end-user
activity information such as idle, spectator, or active.

2.3.3 Capacity Planning. The load of a game session depends heavi-
ly on internal events such as the number of entities that find themselves in
each other’s area of interest and interact altering each other’s stare. Alongside
internal events, there may also occur external events such as the user fluctua-
tion over the day or week with peak hours in the early evening [5]. Hence, it
becomes crucial for a Hoster to anticipate the future game load which brings
the following benefits: (1) enhanced confidence in guaranteeing the fulfilment
of global QoS parameters for the entire distributed game session (like smooth
response time or proper load balancing) through ahead-planning of resource
allocation; (2) anticipation of critical game stages by predicting potential con-
tract violations and performing proactive steering actions before the contracts
are actually broken; (3) opportunities for more aggressive resource allocation
that accommodates a larger number of users.

Projecting future load in highly dynamic Grid environments of game players
needs to take into account a multitude of metrics such as processor, memory,
and network latencies and load. All these metrics can be deterministically ex-
pressed as a (game-specific) function of the human factor, which is the hardest
and most unpredictable parameter. We therefore reduce the prediction problem
to the task of estimating the entity distribution in the game world at several
equidistant time intervals. Our solution goes towards neural networks due to
a number of reasons which make them appropriate to being applied on online
games: they adapt to a wide range of time series, they offer better results than
other simple methods, and they are sufficiently fast compared to other more
sophisticated statistical analysis.
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Figure 2. Neural network capacity planning.

We employ a neural network for
load prediction that has a signal ex-
pander as input to ensure a non-linear
expansion of the input space fed to
the hidden neuron layers (see Figu-
re 2). The input fed into the fuzzy
layer consists of the positions of the
players in the game world at sever-
al successive equidistant time inter-
vals (∆t). As output signal, network
provides a similar space representing
a prediction of the players’ layout in
the next time interval (t + ∆t). Be-
cause the input is expanded, the ex-
pected output will not be a precise
estimation of each player’s position,
but a world of subarea estimations. Each zone of the map is analysed by di-
viding it into subareas and providing a local prediction. An interesting aspect
is that the edges of the subareas are overlapped to hide latencies upon player
transitions.

Two offline phases are required for utilising the neural network-based pre-
diction. The data set collection phase is a long process in which the game is
observed by gathering entity count samples for all subareas at equidistant time
steps. The training phase uses most of the previously collected samples as trai-
ning sets, and the remaining as test sets. The training phase runs for a number
of eras, until a convergence criterion is fulfilled. A training era has three steps:
(1) presenting all the training sets in sequence to the network; (2) adjusting
the network’s weights to better fit the expected output (the real entity count for
the next time step); and (3) testing the network’s prediction capability with the
different test sets.

These two stages are performed only once per world and game type since
they are the main game characteristics that determine the player behaviour.
Once successfully trained, the network can be serialised and reused at a later
time, when the same world and game type combination is played.

2.4 Real-time layer

As part of the real-time layer, the University of Münster is developing the
Real-Time Framework (RTF) [6] that hides the Grid management infrastruc-
ture for the game servers. For the in-game communication, we designed a
custom and highly optimised communication protocol independent from the
XML-based protocols within the management infrastructure. To improve the
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Figure 3. Game distribution strategies.

game scalability to a high number and density of users, we distribute game
sessions based on several distribution strategies illustrated in Figure 3.

The concept of zoning [2] is based on the distribution of the game world
into several geographical zones, each zone being assigned to one game server.
Players are able to move freely between zones with little overhead such that no
interruptions in the game play are experienced. Instancing uses multiple, inde-
pendently processed copies of highly frequented subareas of the geographical
world, each copy being processed by one separate server. If a user moves into
one such highly frequented subarea, he is assigned to one of the available co-
pies. Replication is a novel technique developed in Münster [7] which assigns
multiple servers to a single game world zone with a high load. The responsibi-
lity of computing the entities’ states in that zone is divided equally among the
assigned processors. Each processor has a local copy of the states of all enti-
ties in the game world zone which, after the assigned computations are done,
is synchronised with the other servers.

The main novel features of the RTF are as follows: (1) Highly optimised and
dynamic real-time communication links which adapt to changes in the dynamic
Grid environment and allow the RTF, e.g. to redirect the communication to new
servers underneath without a required reaction from the game developer; (2)
Hidden background preparations like speculative connection establishments,
which allow the runtime transfer and redistribution of parts of a game onto
additional Grid resources without noticeable interruptions for the participating
users; (3) An interface for the game developer that abstracts the game proces-
sing from the location of the participating resources. This is the technical basis
that allows the management layer to dynamically reassign the game processing
to the available resources; (4) Monitoring data gathering in the background
about, e.g., the number of exchanged events, number of in-game objects on a
server, and connection latencies. This data is used by the management layer for
capacity planing and steering services.
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3. Implementation Issues and Experiments

We are developing the scheduling and resource management layers as a
set of WSRF-based services deployed in the Austrian Grid environment that
aggregates a large collection of heterogeneous parallel computers distributed
across several major cities of Austria. We provide a management portal de-
veloped by the University of Innsbruck and depicted in Figure 4, which offers
means of visualising the available machines in the Grid, the game sessions run-
ning at each Hoster site, and important monitoring metrics such as user load
on each game server. The portal also offers key management features such as
start-up and shut-down of sessions for games using RTF as well as stand-alone
proprietary game server.

University of Münster implemented the RTF as a C++ library, since C++ is
the dominating language in game development mainly due to performance re-
asons. The C++ library hides the underlying complexity of the distributed Grid
from the game developers and allows them to realise their games without a ma-
jor shift compared to contemporary client-single server development. Additio-
nally, we realised a Java interface to the C++ library for exporting monitoring
and management capabilities to the upper layers.

In order to generate load patterns suitable for testing and validating our pre-
diction method, we developed a distributed FPS game simulator supporting the
zoning and inter-zone migrations of the entities (see Figure 5). The simulator
integrates the real-time layer implemented and generates dynamic load by si-
mulating interaction hot-spots between large numbers of entities managed by
one server. In order to simulate an as realistic environment as possible, the
entities are driven by several Artificial Intelligence (AI) profiles which deter-
mine their behaviour during a game session: aggressive determines the entity
to seek and interact with opponents; team player causes the entity to seek or
form a group with its teammates; scout leads the entity into uncharted zones
of the game-world (not guaranteeing any interaction); and camper simulates a
well-known FPS game tactic to hide and wait for the enemy. To better emulate
player behaviour in a realistic session, each entity is able to dynamically switch
between all AI profiles during the simulation (e.g. from aggressive to camper
once wounded) with a certain degree of randomness. We configured the entity
speed and interactions to a highly dynamic value making the prediction in our
belief harder than in existing fast-paced FPS games.

To validate our neural network prediction in the first instance, we generated
using our game simulator eight different trace data sets with different characte-
ristics by running 17 hours of simulations for each set and sampling the game
state at every two minutes. The first four data traces simulate different sce-
narios of a highly dynamic FPS game, while the other four are characteristic
to different MMORPG sessions. We use this trace data for training the neural
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Figure 4. Management portal snapshot
Figure 5. Game simulator snapshot

Figure 6. Error trend during neural net-
work training

Figure 7. Comparison of neural network
prediction against other methods

network as presented in Section 2.3.3 until the process converges to a global
minimum (see Figure 6). The majority of the traces are used as training sets
and the rest as test sets.

To quantify the quality of our prediction, we compared the prediction error
of the neural network against other fast prediction methods such as moving
average, last value, average, exponential smoothing, which are known to be
among the most effective in large and dynamic environments as the Grid [10].
Figure 7 illustrates that, apart from producing better results, our neural network
prediction has the main quality of being adaptive to time series with different
characteristics which related methods fail to achieve. The drawback of the-
se conventional methods is that it is not universally clear during a game play
which of them should be applied as the real-time prediction method for the
next time step. Our prediction successfully manages to adapt to all these hete-
rogeneous types of signals and always delivers good results, especially in the
case of highly dynamic FPS action games (i.e. first four data traces).



236 GRID COMPUTING: ACHIEVEMENTS AND PROSPECTS

4. Conclusions

We presented a joint work between the University of Innsbruck and the Uni-
versity of Münster towards a transparent, four-layer Grid environment designed
to improve the scalability and QoS provisioning in online games, as a novel
class of Grid applications appealing to a general public.

At the bottom layer, the RTF library provides the core technology for por-
table development and scalability of games through the combination of zoning
and replication techniques. On top of it, we designed middleware services com-
prising resource allocation, capacity planning, scheduling, and runtime stee-
ring for automatic on-the-fly management, scaling, and provisioning of QoS
parameters required for a smooth and efficient execution on the underlying
Grid resources. We integrated the RTF library into a game simulator capa-
ble of delivering realistic user loads required for validating our methods, and
we showed experimental results of using a neural network for predicting user
behaviour in online games which performs better than traditional last value,
averaging, or exponential smoothing methods.
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Abstract We present the architecture and design of the IANOS scheduling framework.
The goal of the new Grid scheduling system is to provide a general job sub-
mission framework allowing optimal positioning and scheduling of HPCN ap-
plications. The scheduling algorithms used to calculate best-suited resources
are based on an objective cost function that exploits information on the pa-
rameterization of applications and resources. This standard-based, interoperable
scheduling framework comprises four general web services and three modules.
The middleware is complemented with one client and one admin console. The
implementation is based on proposed Grid and Web services standards (WSRF,
WS-Agreement, JSDL, and GLUE). It is agnostic to a specific Grid middleware.
The beta version of IANOS has been tested and integrated with UNICORE. The
validation of IANOS is in progress by running different types of HPCN applica-
tions on a large-scale Grid testbed.
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1. Introduction

In this paper we describe the integration of the Meta Scheduling Service
(MSS) developed within the German VIOLA project [6], with the Swiss In-
telligent Grid Scheduling (ISS) project [2], and the new monitoring system
VAMOS [4]. The result is the new Grid scheduling framework IANOS (Intel-
ligent ApplicatioN-Oriented Scheduling) aims at increasing the throughput of
a Grid of High Performance Computing and Networking (HPCN) resources.
The first testbed includes parallel machines in Germany and Switzerland.

With respect to existing Grid scheduling systems, the IANOS framework
uses information about the behavior of HPCN applications on computational
resources and communication networks. The goal is to place an application
on a well suited resource in a Grid, reducing costs and turn-around time and
improving throughput of the overall computing resources. In future, a Grid
should include different types of resources. Some have high processor perfor-
mances, others a high main memory bandwidth, others a low latency network,
others a high inter-node communication bandwidth, or a good access to huge
data storage systems. In the set of target applications there are those needing a
fast processor, a high main memory bandwidth, a low network latency, a high
inter-node communication bandwidth, or need a good data access. It is an art
to recognize the right resource for each type of applications. For this purpose,
applications and computational resources are characterized by a set of parame-
ters [1]. These parameters can be fix or are determined after each execution by
the new VAMOS [4] application-oriented monitoring system. They are then
used to make a-priori estimations demanding prediction models for the CPU
time, the waiting time, or on the overall execution costs.

The IANOS is a standard based, interoperable scheduling framework. It
comprises four general web services and three modules: the Meta Scheduler

(MSS) performs resource discovery, candidate resource selection and job man-
agement; the Resource Broker is responsible for the selection of suitable re-
sources based on a Cost Function model; the System Information is a frontend
to Data Warehouse module, analyzes the stored execution data of a given ap-
plication to compute certain free parameters to be used by scheduling models;
the Monitoring Service passes the submission information received from MSS
to the Monitoring Module and sends monitored data received from the Moni-
toring Module to the System Information; the Monitoring Module monitors the
application during execution and computes execution relevant quantities; the
Data Warehouse module is part of SI and stores information on applications,
Grid resources and execution related data; the Grid Adapter module provides
generic interfaces and components to interact with different Grid middlewares.
The framework is complemented with one IANOS client that submits the ap-
plication to the MSS using WS-Agreement, and the Web Admin that provides
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a web interface to store application and resource relevent parameters and data
into the Data Warehouse.

IANOS allocates computing and network resources in a coordinated fash-
ion [3]. The IANOS MSS prepares a list of candidate resources and sends it to
the Broker. The Broker collects all the data needed to evaluate the cost func-
tion model, prepares a list of potentially optimal schedules that is sent back
to the MSS. If still available, the latter module submits the application to the
machine with lowest costs. Otherwise, the second most cost efficient resource
is chosen and so on. If all the five proposals are not available, the Broker is
reactivated to recompute another set of proposals.

The implementation is based on state-of-the-art Grid and Web services tech-
nology as well as existing and emerging standards (WSRF, WS-Agreement,
JSDL, and GLUE). The IANOS is a general scheduling framework that is ag-
nostic to a Grid middleware, and therefore can easily be adapted to any Grid
middleware. The beta version of IANOS has been tested and integrated with
UNICORE 5 by implementing a Grid Adapter for it. The present version in-
cludes all the models and monitoring capabilities. The free parameters in the
cost function model have been validated on GbE clusters with well-known ap-
plications. The next step is to build a Grid of different type of resources and a
fine tuning of the free parameters using a set of relevant applications coming
from the HPCN community.

The IANOS middleware helps not only in optimal scheduling of applica-
tions but also the collected data on Grid resources and the monitored data on
past application executions can be used to detect overloaded resources and to
pin-point inefficient applications that could be further optimized.

The IANOS middleware architecture is detailed in Section 2. The reference
scheduling scenario is explained in Section 3. In Section 4, a short description
of IANOS scheduling models is presented. The last Section provides summary
and information on future work.

2. Architecture & Design

The IANOS architecture is presented in Figure 1. In the following subsec-
tions the different modules are presented.

2.1 Grid Adapter

The Grid Adapter mediates access to a Grid System through a generic set
of modules as shown in Figure 2. It provides information on the Grid re-
sources including CPU time availability and handles the submission of jobs on
the selected resources. The SiteManager queries the Grid system for a list of
available Grid Sites based on their type, for example, Globus site or UNICORE
site. The InfoManager provides static information on the hardware and soft-
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Figure 1. IANOS Middleware Architecture:

ware configurations, on usage policies, and dynamic information on resource
availability, i.e. on the current loads. All this information is modeled as an
extended GLUE schema [8]. The TemplateManager contacts available Grid
Sites for their installed applications. Each application is modeled as a WSAG-

Template. The DataManager is responsible for the stag in/out of job files. The
SubmissionManager is responsible for job submission and management. The
ReservationManager handles the reservation of computational and network re-
sources for a job submission. The resources are reserved for certain duration
of start and end time. The JobManager and the DataManager receives JSDL

[7] as input while the ReservationManager receives WS-Agreement as an input.
The Grid Adapter is the only IANOS module that is connected to a Grid sys-

tem. Therefore, necessary interfaces are defined for each Grid adapter module
for easy integration with different Grid middlewares. We do not need to imple-
ment a new Grid Adapter for each Grid middleware. Instead, a plugin mech-
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anism is used in the design of Grid Adapter modules. At the moment, Grid
adapter plugins for the UNICORE Grid middleware have been implemented.

Figure 2. Grid Adapter Modules & their Interaction with MSS and Grid Resource

2.2 Meta Scheduling Service (MSS)

The MSS is the only IANOS service that is accessible by the client. It per-
forms client authentication and candidate resources selection. It uses the Grid
Adapter to access the Grid system, and the access to the client is provided by
an AgreementFactory interface. The client and the MSS communicate over the
WS-Agreement protocol. The Client requests installed applications by issu-
ing an AgreementTemplate request. The MSS first validates user requests and
then queries the underlying Grid system for the list of installed applications
based on user authorization filtering and application availability. The MSS
sends these applications to the client in the form of AgreementTemplates. The
client selects and submits the application to MSS by sending an AgreementOf-

fer. This AgreementOffer includes a job description, application parameters,
and user QoS preferences (maximum cost, maximum turnaround time).
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Upon receiving an AgreementOffer from client, it first identifies potential
candidate resources and then queries the Grid Adapter for each candidate re-
source’s static and dynamic information, which is received in GLUE format.
It also retrieves the CPU time availability information (TimeSlots) for each
candidate resource by contacting their local RMS. The submitted application
is represented by an extended JSDL with information on instrinsic application
parameters, and user QoS preferences, and GLUE contains the information
on candidate resources. The MSS sends JSDL and GLUE documents to the
Resource Broker.

The response from the Broker is an ordered list of five execution configu-
rations. Each configuration is represented by JSDL and includes start and end
time of the execution, required number of nodes, and the cost value for this
configuration. The MSS starts negotiation with resources and uses the GA to
schedule one of the configurations following the preferences expressed in the
ordered list. If it is not possible to schedule any of the five configurations,
the Broker is recontacted to compute new configurations based on the new
availability information. A WS-Agreement Resource is created for each suc-
cessfully submitted job on a selected resource, with job information stored as
resource properties. The MSS supports complete job management, such as job
monitoring and control.

2.3 Broker

The Broker service exposes only one operation, getSystemSelection. The
parameters of this operation are JSDL and GLUE documents; representing the
candidate resources, the application parameters, and the user QoS preference.
The Broker uses two modules to decide on the suitable resources for a given ap-
plication. The EtemModule implements the Execution Time Evaluation model,
and the CfmModule implements the Cost Function model. Applications can
use the standard cost function implementation or a separate plugin tailored to a
specific application can be implemented. This implementation framework al-
lows separating implementations of different models and to extend or provide
new implementations of the models.

Each candidate resource’s availability information is in the form of TimeS-
lots, where every TimeSlot is represented by the start and the end time, and by
the free number of nodes during this available time. To compute a cost func-
tion value for each TimeSlot of the candidate resources, the RB needs IANOS
relevant resource parameters shown in Table 1, and data on the characteristics
and requirements of the submitted application. The RB contacts the System
Information for this data, and, based on the application requirements (nodes,
memory, libraries etc), filters out unsuitable candidate resources. It then calcu-
lates the cost values for all suitable (execution time is less than available time)
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TimeSlots of the candidate resources, prepares an ordered list of suitable con-
figurations (including start-time and deadlines), and sends it to the MSS. Each
configuration along with job requirements is represented by JSDL.

2.4 System Information

It exposes three operations: getAppISSInfo, updateAppExecutionInfo and
updateISSInfo. The getAppISSInfo operation provides data on given resources
and applications to the Broker. The updateAppExecutionInfo operation re-
ceives execution related data from the Monitoring service. The updateISSInfo

operation receives IANOS relevant static resource information from Monitor-
ing service.

The System Information is a frontend to the Data Warehouse module. An in-
terface is designed to allow integration between System Information and Data
Warehouse independent of the specific implementation of the Data Warehouse.
The Data Warehouse is contacted by the System Information to query, add or
update a stored data. It includes the ETEM Solver module that recomputes
the execution time prediction parameters after each job execution. These pa-
rameters are then used by the Broker to predict the execution time for the next
application submission.

2.5 Data Warehouse

The Data WareHouse is a repository of all information related to the ap-
plications, to the resources found, to the previous execution data, and to the
monitoring after each execution. Specifically, the Data Warehouse contains
the following information:

Resources: Application independent hardware quantities, IANOS re-
lated characteristic parameters

Applications: Application characteristics and requirements (software, li-
braries, memory, performance)

Execution: Execution data for each executed run (Execution dependent
hardware quantities, application intrinsic parameters, free parameters)

A Web Admin interface is designed to add or update information about re-
sources and applications into the Data Warehouse.

2.6 Monitoring Service & Module

The Monitoring service receives submission information in JSDL from MSS
and passes them to the Monitoring Module to monitor the "IANOS" applica-
tion. Upon receiving the monitored execution data from the Monitoring Mod-
ule, it sends the same data to the System Information.
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The Monitoring Module [4] measures and collects IANOS relevant execu-
tion quantities (MFLOPS/s rate, memory needs, cache misses, communication
and network relevant information, etc) during application execution. These
quantities can be computed through a direct access to hardware counters using
PAPI. It performs a mapping between hardware monitored data using the Gan-
glia service and application relevant data using the RMS (Local Scheduler,
Torque/Maui). At the end of the execution, it prepares and sends monitored
data to the Monitoring Service as shown on the right side of Table 1.

2.7 Integration with UNICORE Grid System

In a first phase of the IANOS project, we have integrated the IANOS frame-
work with the UNICORE Grid System. The Grid Adapter with its generic
functionality and the modules plugins specific for UNICORE has been imple-
mented and tested. On the client side, a UNICORE Client plugin has been
developed for this purpose. This client plugin provides a GUI interface to in-
teract with the MSS.

3. Scheduling Scenario

This section describes a reference scenario of job submission using IANOS
framework.

1 User log in to the client

2 User requests applications from MSS by sending WS-Agreement Tem-
plate request

2a MSS validates and authenticates the client request, contact Grid Adapter
for all Grid Sites, and then queries these sites for the list of installed
applications based on user authorization filtering

2b Prepare and return WS-Agreement Templates (representing the applica-
tions) to the client

3 User selects one application; specifies application intrinsic parameters
and QoS preference (Cost, Time, Optimal), and submits the application
as an AgreementOffer to MSS

3a MSS validates agreement offer, selects candidate resources based on
the user access rights and the application availability, queries the Grid
Adapter for each candidate resource’s static and dynamic information
including the resource’s local RMS availability

4 MSS sends candidate resources and application along with intrinsic pa-
rameters and user QoS preferences to Broker
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5 Broker requests data on candidate resources and given application from
System Information

7 System Information requests the required information from Data Ware-
house through Data Warehouse interface

8 Data Warehouse sends collected information to System Information on
the candidate resources, on the application, and on the previous execu-
tion data of the same application

9 System Information sends requested data including the free parameters
to Broker

10 Broker filters out unsuitable candidate resources based on the application
requirements (nodes, memory, libraries etc). It then evaluates the cost
function model and prepares a list of cost function values and tolerances
for all candidate resources based on user QoS preference

11 Broker selects an ordered list of suitable configurations after applying
the cost function and sends them to MSS

12 MSS uses Grid Adapter to schedule one of the configurations follow-
ing the preferences expressed in the ordered list, and WS-Agreement
Resource is created for each successfully submitted configuration

13 MSS sends submission information along with configuration to Moni-
toring Service, which in turn sends the same submission information to
Monitoring Module

14 Monitoring Module monitors the execution of application, computes the
execution relevant quantities and sends them to Monitoring Service

15 Monitoring Service sends the monitored data received from Monitoring
Module to System Information

16 At the end of execution, results are being sent to the client

17 System Information computes ETEM model’s free parameters from pre-
vious execution data and application intrinsic parameters

4. IANOS Scheduling Models

The Broker of the IANOS middleware uses two models: Cost Function
model and the Execution Time Evaluation model. They are based on a pa-
rameterization of the applications and the resources [1]. The Cost Function

model calculates the cost value for each candidate resource. Details can be
found in [2]. The Execution Time Evaluation model forecasts the execution
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time of a given application on a given resource that needs to know the CPU
node performance of the application.

4.1 Assumptions

User provides some input parameters such as size of the problem, num-
ber of time iterations, etc

Applications are well balanced in computation, communication, and stor-
age needs

The Grid resources are homogeneous

All Grid resources share their IANOS relevant resource and cost param-
eters as shown in Table 1

4.2 Cost Function Model (CFM)

The job submission process is based on an estimation of the overall cost
of the HPCN application. A Cost Function model has been developed that
depends on

CPU Costs Ke

Licensing Costs Kℓ

Waiting Time Costs Kw

Energy Costs Keco

Data Transfer Costs Kd

All these quantities depend on the application, on the per hour costs of a
resource, on the number of processors used, and on data transfer costs over the
networks. We express the money quantity as Electronic Cost Unit ([ECU]).
The best schedule is obtained when the cost function [2]

z = α(Ke + Kℓ) + βKw + γKeco + δKd (1)

is minimized. The four parameters α, β, γ, and δ can be used to weight user
preferences. When a user wants to get the result as soon as possible, regardless
of costs, he chooses α = γ = δ = 0 and β > 0. If he demands that execution
costs are as small as possible, then β = 0. The user can prescribe two con-
straints: Maximum Cost and Maximum Turnaround Time. Then, the minimal
cost solution satisfying the constraints is computed by the model.
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4.3 Execution Time Evaluation Model (ETEM)

The execution time cost Ke is part of the cost function z. The execution
time includes the CPU time and the communication time. Sometimes these
timings have to be added, sometimes there is overlap. Their estimations are
computed using historical execution data stored in the DataWarehouse. By
means of the parameterization of the resources and the application, we estimate
the execution time of an application on an unknown Grid resource based on
the performance and on the execution time of the same application on a known
resource. Then, we are able to predict the costs of this application on all the
Grid resources. For this purpose, the application user has to deliver execution-
relevant data such as the number of time steps, the matrix size, or other typical
data that defines the job to be submitted. This model is quite complex and will
be described somewhere else.

Table 1. IANOS Cost Function relevent Quantities.

Cost Parameters Resource Parameters Execution Parameters

Machine Online Time Number of nodes Execution Time
Regression Factor Processors Per Node Average Efficiency
Factor (in [1/Year]) Cores Per Processor Average Performance
Insurance Fee Peak CPU Performance Packets Sent
Investment Cost CPU Performance Factor Packets Received
Interest Cost Peak Main Memory Bandwidth Sent Packet Size
Personal Cost Peak Network Bandwidth Received Packet Size
The cost for a KWh Machine Architecture Memory used
Infrastructure Cos Operating System Swap used
Software licence Cost Network Topology
Management Overhead Network NIC’s Type
Host Efficiency (over the year)
Amortissement Time (in years)
Hours (non-bissextile year)
Node’s Energy Consumption

5. Conclusion and Future Work

We have presented the design and implementation of IANOS scheduling
framework for HPCN applications aiming at optimizing the usage of an HPCN
Grid and improve the QoS. It is Grid middleware independent and is based on
proposed Grid and Web services standards. The present version of IANOS has
been integrated within UNICORE and includes all the functionalities needed
to compute the Cost Function model and to submit the application to a well-
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suited resource. In a first validation step, a small Grid of GbE clusters and
simple, well-known applications have been used.

Currently, we are validating IANOS framework on a large scale testbed by
running different types of HPCN applications. This testbed includes diverse
classes of resources from three institutes: EPFL, Fraunhofer SCAI, and Uni-
versity of Dortmund. This new testbed will enable us to fine-tune the free
parameters in the Cost Function model. It is planned to have a well-tested
version by the end of the CoreGRID project end of August 2008.
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1. Introduction
Peer-to-peer systems have gained tremendous popularity in recent years due

to characteristics of scalability, fault-tolerance and self-management. Struc-
tured Overlay Networks (SONs) are a major class of these peer-to-peer system,
examples of SONs include Chord [3], Chord# [6], Pastry [10] and DKS [7].
SONs provide lookup services for Internet-scale applications. Distributed Hash
Tables (DHTs) use a SON’s lookup service to provide a put/get interface for
distributed systems with eventual consistency guarantees [11]. In contrast,
many distributed systems require stronger consistency guarantees, relying on
services such as consensus [12] and atomic commits [13]. These services em-
ploy quorum techniques at their core to guarantee consistency.

Quorum based algorithms are not well-suited for DHTs. Quorum based
techniques provide consistency guarantees as long as quorums overlap i.e. are
never disjoint. On the contrary, the number of replicas of an item are not
constant in a DHT. Hence, due to the extra replicas in a DHT, two quorums
might not intersect, leading to inconsistent results.

Like most distributed systems, DHTs replicate a data item on different nodes
in the SON to avoid loosing data. In DHTs, the number of replicas may be-
come greater than the replication degree for two reasons: lookup inconsisten-
cies and partitions. Consider a DHT with replication degree three and an item
replicated on nodes N1,N2 and N3. Due to lookup inconsistencies in the un-
derlying SON1, another node N4 might think that it is also responsible for the
data item and will replicate the item. In such a case, a majority-based quorum
technique [16] will result in inconsistent data as there are disjoint majority sets
e.g. {N1,N2} and {N3,N4}.

DHTs tolerate partitions in the underlying network by creating multiple in-
dependent DHTs. Due to consistent hashing [14], new nodes take respon-
sibilities of inaccessible nodes and replicate data items. Thus, in the afore-
mentioned case, if a partition occurs such that N1,N2 (partition P1) are sep-
arated from N3 (partition P2), owing to consistent hashing, replacement node
N3′ will replicate the item in P1, and replacement nodes N1′ and N2′ will
replicate the item in P2. This will result in the two partitions to have disjoint
majority sets which will lead to data inconsistency.

It has been proved that it is impossible for a web service to provide the fol-
lowing three guarantees at the same time: consistency, availability and partition-
tolerance [9]. These three properties have also been proved to be impossible
to guarantee by a DHT working in an asynchronous network such as the Inter-
net [7]. Thus, choosing to provide guarantees for two properties will violate

1Informally, a lookup inconsistency means multiple nodes believe to be responsible for the same identifier.
The term will be discussed in detail later.
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the guarantee for the third. Since lookups are always allowed in DHTs, this
implies DHTs are always available, thus consistency cannot be guaranteed.

In this paper, we study the causes and frequency of occurrence of lookup
inconsistency under different scenarios in a DHT. We focus solely on lookup
inconsistency leaving scenarios where complete partitions can happen, result-
ing in creation of multiple separate DHTs. We discuss and evaluate techniques
that can be used to decrease the effect of lookup inconsistencies. Based on
our simulation results while considering lookup inconsistencies to be the only
reason for creation of extra replicas, we give an analytical model that gives the
probability under which a majority-based quorum technique works correctly.
Using techniques to decrease the effect of lookup inconsistency, we show that
the probability of a quorum technique to produce consistent results is very
high.

2. Background
Basics of a Ring-based SON. A SON makes use of an identifier space,
which for our purposes is a range of integers from 0 to N − 1, where N is the
length of the identifier space and is a large, fixed and globally known integer.
For ring-based SONs, this identifier space is perceived as a ring by arranging
the integers in ascending order and wrapping around at N −1.

Every node in the system has a unique identifier drawn from the identifier
space. Each node p has a pointer, succ, to its successor, which is the node
immediately succeeding p, going in clockwise direction on the ring starting at
p. Similarly, each node q has a pointer, pred, to its predecessor, which is the
node immediately preceding q, going in anti-clockwise direction on the ring
starting at q. To enhance routing performance, SONs also maintain additional
routing pointers.

Handling Joins and Failures. Apart from succ and pred pointers, each
node p also maintains a successor-list consisting of p’s c immediate succes-
sors, where c is typically set to log2(n), n being the network size.

Chord [3] handles joins and failures using a protocol called periodic stabi-
lization. Each node p periodically checks to see if its succ and pred are alive.
If succ is found to be dead, it is replaced by the closest alive successor in the
successor-list. If pred is found to be dead, p sets pred := nil.

Joins are also handled periodically. A joining node makes a lookup to find
its successor s on the ring, and sets succ := s. Each node periodically asks
for its successor’s pred pointer, and updates its succ pointer if it gets a closer
successor. Thereafter, the node notifies its current succ about its own existence,
such that the successor can update its pred pointer if it finds that the notifying
node is a closer predecessor than pred. Hence, any joining node is eventually
properly incorporated into the ring.
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Failure Detectors. SONs provide a platform for Internet-scale systems,
aimed at working on an asynchronous network. Informally, a network is asyn-
chronous if there is no bound on message delay. Thus, no timing assumptions
can be made in such a system. Due to the absence of timing restrictions in an
asynchronous model, it is difficult to determine if a node has actually crashed
or is very slow to respond. This gives rise to wrong suspicions of failure of
nodes.

Failure detectors are modules used by a node to determine if its neighbors
are alive or dead. Since we are working in an asynchronous model, a failure
detector can only provide probabilistic results about the failure of a node. Thus,
we have failure detectors working probabilistically.

Failure detectors are defined based on two properties: Completeness and Ac-
curacy [5]. In a crash-stop model, completeness is the property that requires a
failure detector to eventually detect as dead a node which has actually crashed.
Accuracy relates to the mistake a failure detector can make to decide if a node
has crashed or not. A perfect failure detector is accurate all the times, while
the accuracy of an unreliable failure detector is defined by its probability of
working correctly.

For our work, we use a failure detector similar to the baseline algorithm
used by Zhuang et. al [4]. A node sends a ping to its neighbors at regular
intervals. If it receives an acknowledgment within a timeout, the neighbor is
considered alive. Not receiving an acknowledgment within the timeout implies
the neighbor has crashed. The timeout is chosen to be much higher than the
round-trip time between the two nodes.

3. Lookup and Responsibility Consistency
Data consistency is based on lookup consistency and responsibility consis-

tency in the routing layer. We define these concepts and explain how a violation
of these happens. The notion of a SON’s configuration comprises the set of all
nodes in the system and their pointers to neighboring nodes. A SON evolves
by either changing a pointer, or adding/removing a node.

Lookup Consistency. A lookup on a key is consistent, if lookups made for
this key in a configuration from different nodes, return exactly the same node.

Lookup consistency can be violated if some node’s successor pointer does
not reflect the current ring structure. Figure 1a illustrates a scenario, where
lookups for key k can return inconsistent results. This configuration may occur
if node N1 falsely suspected N2 as failed, while at the same time N2 falsely
suspected N3 as failed. A lookup for key k ending at N2 will return N4 as the
responsible node for k, whereas a lookup ending in N1 would return N3.
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(a) (b)

Fig. 1: (a) Lookup inconsistency caused by wrong successor pointers. (b) Responsibility incon-
sistency caused by wrong successors and backlinks resulting in overlapping responsibilities.

Responsibility. A node n is said to be locally responsible for a certain key, if
the key is in the range between its predecessor and itself, noted as (n.pred,n].
We call a node globally responsible for a key, if it is the only node in the system
that is locally responsible for it.

The responsibility of a node changes whenever its predecessor is changed. If
a node has an incorrect predecessor pointer, it might have an overlapping range
of keys with another node. However, to have concurrent operations on an item
i with key k working on two different physical copies i′ and i′′, the concurrent
lookups should be inconsistent, and there should be an overlap of responsibility
for key k. Thus the following definition on responsibility consistency combines
lookup consistency and global responsibility.

Responsibility Consistency. The responsibility for a key is consistent if
there is a globally responsible node for that key in the configuration.

A situation where responsibility consistency for key k is violated is shown
in Figure 1b. Here, lookup consistency for k cannot be guaranteed and both
nodes, N3 and N4, are locally responsible for k. However, in Figure 1a, there
is only one node N3 that is globally responsible despite lookup inconsistency.
At node N4 the item is simply unavailable. The situation depicted in Figure 1b
arises as the situation in Figure 1a with an additional wrong suspicion of node
N4 about its predecessor N3.

As lookup consistency and responsibility consistency cannot be guaranteed
in a SON it is impossible to ensure data consistency. However the violation
of lookup consistency and responsibility consistency is a result of a combina-
tion of very infrequent events. In the following section we present simulation
results that measure the probability of lookup inconsistencies and the prob-
ability of having an inconsistent responsibility, which turns out to be almost
negligible.
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4. Evaluation
In this section, we evaluate how often lookup inconsistencies and overlap-

ping responsibilities occur. For our experiments, the measure of interest is the
fraction of nodes that are correct, i.e. do not contribute to inconsistencies. The
evaluations were done in a stochastic discrete event simulator in which we im-
plemented Chord [3]. The simulator uses an exponential distribution for the
inter-arrival time between events (joins and failures). To make the simulations
scale, the simulator is not packet-level. The time to send a message from one
node to another is an exponentially distributed random variable.

For our simulations, the level of unreliability of a failure detector is defined
by its probability of working correctly. For the graphs, the probability of a
false positive 2 is the probability of inaccuracy of failure detectors. Thus, a
failure detector with a probability of false-positives equal to zero is a perfect
failure detector.

In our experiments, we implemented failure detectors in two styles, indepen-
dent and mutually-dependent failure detectors. For independent failure detec-
tors, two separate nodes falsely suspect the same node as dead independently.
Thus, if a node n is a neighbor of both m and o, the probability of m detect-
ing n as dead is independent of the probability of o detecting n as dead. For
mutually-dependent failure detectors, if a node n is suspected dead, all nodes
doing detection on n will detect n as dead with higher probability. This may
be similar to a realistic scenario where due to n or the network link to n being
slow, nodes do not receive ping replies from n thus detecting it as dead. In the
afore-mentioned case, if n is suspected, both m and o will detect it dead with
higher probability than the probability of false-positive. Henceforth, we use
independent failure detectors unless specified.

For our simulations, we first evaluate lookup inconsistencies for different
degrees of false-positives. Next, we evaluate overlapping responsibilities in
a system with and without churn. Furthermore, we compare lookup incon-
sistency and overlapping responsibilities. Finally, we present the results with
mutually dependent failure detectors.

Our simulation scenario has the following structure: Initially, we succes-
sively joined nodes into the system until we had a network with 1024 nodes.
We then started to gather statistics by regularly taking snapshots (earlier de-
fined as a configuration) of the system. In each snapshot, we counted the
number of correct nodes i.e. do not contribute to lookup inconsistency and
overlapping responsibilities. For the experiments with churn, we introduced
node joins and failures between the snapshots. We varied the accuracy of the
failure detectors from 95% to 100%, where 100% means a perfect failure de-

2detect an alive node as dead
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Fig. 2: (a) Evaluation of lookup inconsistency. (b) Evaluation of lookup inconsistency under
churn with only node joins.

tector. This range seems reasonable, since failure detectors deployed on the
Internet are usually accurate 98% of the time [4]. The results presented in the
graphs are averages of 1800 snapshots and 30 different seeds.

Lookup Inconsistency. Figure 2a illustrates the increasing lookup incon-
sistency when the failure detector becomes inaccurate. The plot denoted ‘Total
Inconsistencies’ shows the maximum over all possible lookup inconsistencies
in a snapshot, whereas ‘Random Lookups’ shows the number of consistent
lookups when – for each snapshot – lookups are made for 20 random keys,
where each lookup is made from 10 randomly chosen nodes. If all lookups for
the same key result in the same node, the lookup is counted as consistent. As
can be seen, changing the periodic stabilization rate does not effect the lookup
inconsistency in this case. This is due to the fact that there is no churn in the
system.

Next, we evaluated lookup inconsistencies in the presence of churn. We var-
ied the churn rate with respect to the periodic stabilization (PS) rate of Chord.
For our experiments, we defined churn as node session times, to be in tens
of minutes [15]. Short session times produce ‘high churn’ while long session
times produce ‘low churn’. Figure 2b shows the results for our experiments.
The Y-axis gives a count of the number of lookup inconsistencies per snapshot.
As expected, churn does not effect lookup inconsistencies much. Though, even
with a perfect failure detector (probability of false positive=0), there will be a
non-zero though extremely low number of lookup inconsistencies given churn
(2.79x10−7 for a high churn system). The reason is that an inconsistency in
such a scenario only happens if multiple nodes join between two old nodes
m,n (where m.succ = n) before m updates its successor pointer by running PS.

This effect of churn is due to node joins on lookup inconsistency can be
reduced to zero if we allow lookups to be generated only from nodes that are
fully in the system. A node is said to be fully in the system after it is accessible
from any node that is already in the system. Once a node is fully in the system,
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Fig. 3: (a) Evaluation of overlapping responsibilities under churn with only node joins. (b)
Comparison of lookup inconsistency and overlapping responsibilities. Lookup inconsistency is
plotted against Y-axis while overlapping responsibilities is plotted against Y2-axis.

 0.98

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0  0.01  0.02  0.03  0.04  0.05  0.06
 0.9995

 0.99955

 0.9996

 0.99965

 0.9997

 0.99975

 0.9998

 0.99985

 0.9999

 0.99995

F
ra

c
ti
o
n
 o

f 
c
o
n
s
is

te
n
t 
lo

o
k
u
p
s

F
ra

c
ti
o
n
 o

f 
c
o
n
s
is

te
n
t 
re

s
p
o
n
s
ib

ili
ti
e
s

Probability of false positives

Consistent lookups
Consistent responsibilies

Fig. 4: Evaluation of lookup inconsistency and overlapping responsibilities with mutually de-
pendent failure detectors. Lookup inconsistency is plotted against Y-axis while overlapping
responsibilities is plotted against Y2-axis.

it is considered to be in the system until it crashes. We define the first node
which creates the ring as fully in the system.

Responsibility Inconsistency. Next, we evaluate the effect of unreliable
failure detectors and churn on the responsibility consistency. The results of our
simulations are presented in Figure 3a which shows that responsibility consis-
tency is not effected by churn. Figure 3b shows that even with a lookup incon-
sistency, the chances of overlapping responsibilities are decreased roughly 100
times. This can be seen by the scale of the lookup inconsistency (Y-axis) and
overlapping responsibility (Y2-axis).

Figure 4 shows results for a scenario without churn using mutually depen-
dent failure detectors, where if a node n is suspected, the probability of nodes
doing accurate detection on n drops to 0.7. In the scenario for the simulations,
we suspect 32 random nodes. Compared to independent failure detectors, mu-
tually dependent failure detectors produce higher lookup inconsistencies, but
still low.
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5. Data Consistency with Majority-Based Algorithms
To prevent loss of items stored in a SON, items are replicated on a set of

nodes. The set of nodes that are responsible for the replicas, is determined
by some replication scheme. Here we consider replication schemes that have
a fixed replication factor r. An example for such a replication scheme is the
DKS symmetric replication [2], where a globally known function determines
the set of keys under which replicas for an item are stored. The set of replicas
for an item is called replica set.

In dynamic environments, some replicas might be temporary unavailable.
However operations on an item should be able to succeed if they can access
a subset of the replica set. Majority based algorithms require that at least a
majority of replicas are available and tolerate the unavailability of the rest.
Thus they are well suited for a SON. We refer to a set with a majority of
replicas as a majority set. As each write operation includes such a majority set,
two concurrent write operations have at least one replica in common, such that
a conflict can be detected. It is crucial that the number of replicas in the system
is never increased, otherwise one cannot guarantee that concurrent operations
work on non-disjoint majority sets. However responsibility inconsistencies
temporarily lead to an increase in the number of replicas. In the following,
we analyze the probability of two concurrent operations working on disjoint
majority sets given i inconsistencies in the replica set, to which we refer as
inconsistent replicas.

Probability for Disjoint Majority Sets. In this section we model the prob-
ability that two operations work on disjoint majority sets in a given configu-
ration. We assume that each responsibility inconsistency involves at most two
nodes. More than two concurrent operations working on disjoint majority sets
are not considered as the probability for it is considered as negligibly small.

The size of the smallest majority set is defined by m = b r
2c+ 1. Ti,r, as

shown in Equation (1), counts the number of all possible combinations for two
majority sets, given i > 0 inconsistent replicas and the replication factor r. The
formula takes into account the number of inconsistency j that are included in
the majority sets. Each included inconsistency involves two possibilities to
select a node that stores the replica.

Ai,r, in Equation (2), calculates the number of possible combinations for
two disjoint majority sets, m1 and m2, given i > 0 inconsistent replicas in the
replica set and a replication factor r. We compute Ai,r by choosing set m1
and count all possible sets m2 that are disjoint to m1. Part a of Ai,r counts
all possibilities to choose m1, such that at least one inconsistency is included.
Again, j denotes the number of included inconsistencies. The second majority
set m2 shares k of the j inconsistencies (part b). For the remaining replicas of
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m2 we have to consider how many inconsistencies l it will include from those
that are left (part c).

Ti,r = (
min(i,m)

∑
j=max(m−(r−i),0)
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)(
i
j
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∗2 j)2 (1)
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where (ub short for upper bound, lb short for lower bound)

lb j = max(1,m− (r− i))

ub j = min(i,m)

lbk = max(1,m− (r−m))

lbl = max(0,(m− k)− ((r−m)− (i− j)))

ubl = min(i− j,m− k)

pir =
r

∑
i=1

(1− p)r−i ∗ pi ∗
Ai,r

Ti,r
(3)

pir calculates the overall probability in the system that two concurrent oper-
ations on one item operate on disjoint majority sets, where p is the probability
of an inconsistency at a node as measured in our simulations.

Table 5 contains the probabilities for disjoint majority sets of two concurrent
operations as calculated by Ai,r

Ti,r
. As with an even replication factor the mini-

mum number of replicas in common for two majority sets is two in contrast
to one for an odd number of replicas, the probability for disjoint majorities is
lower for an even number of replicas. In Figure 6 the results of the simulations
are combined with Equation 3, where p denotes the simulated probability for
an inconsistency. Depending on the failure detector accuracy it plots the prob-
ability to get non-disjoint majority sets. An even replication factor increases
the probability of having non-disjoint majority sets, however less unavailable
replicas can be tolerated.

6. Related Work
DHTs have been the subject of much research in recent years, with substan-

tial amount of work on resilience of overlays to churn. While these studies
show that overlays tolerate failures, they also show how lookups are effected
by churn.

Rhea et. al. [1] have explored lookup inconsistencies for a real implemen-
tation under churn. Their approach differs from ours as they define a lookup
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r i = 1 i = 2 i = 3 i = 4
1 0.5
2 0 0.25
3 0.16 0.31 0.42
4 0 0.05 0.14 0.22
5 0.05 0.11 0.19 0.26

Fig. 5: Probability for disjoint majority
sets depending on the replication factor r
and the number of inconsistencies i in the
replica set.
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Fig. 6: Probability for non-disjoint major-
ity sets in a SON, depending on the accu-
racy of the failure detector

to be consistent if a majority of nodes concurrently making a lookup for the
same key get the same result. For our work, we require all results of making
the lookup for the key to be the same. Furthermore, our work is extended to
responsibility consistency. In their work, Rhea et. al. also study lookup incon-
sistency in an implementation of Pastry [10] called FreePastry [18], while we
experiment with Chord.

Liben-Nowell et. al. [17] study the evolution of Chord under churn. Their
study is based on a fail-stop model i.e. they assume perfect failure detection
and reliable message delivery. Consequently, they ignore “false suspicions of
failure”, which is the main topic of our study as we observe that imperfect
failure detectors are the main source of lookup inconsistencies.

Zhuang et. al. [4] studied various failure detection algorithms in Overlay
Networks. They also use the same approach as Rhea et. al. [1] to define
inconsistencies, which differs from our work.

7. Conclusion
This paper presents an evaluation of consistency in SONs. Data consistency

cannot be achieved if responsibility consistency is violated. We describe why
it is impossible to guarantee responsibility consistency in SONs. By simu-
lating a Chord SON, we show that the probability of violating responsibility
consistency is negligibly low.

We analytically derive the probability that majority-based operations are
working on non-disjoint majority sets given an inconsistent responsibility for at
least one replica. Operations that work on disjoint majority sets lead to incon-
sistent data. By combining the results from simulations and analysis, we show
that the probability for getting inconsistent data when using majority based al-
gorithms is significantly low. Furthermore, we conclude that since the accuracy
of the failure detector greatly influences lookup and responsibility consistency,
significant attention should be paid to the failure detection algorithm.
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Abstract This work integrates two distinct research areas of parallel and distributed com-
puting, (1) automatic loop parallelization, and (2) component-based Grid pro-
gramming. The latter includes technologies developed within CoreGRID for
simplifying Grid programming: the Grid Component Model (GCM) and Higher-
Order Components (HOCs). Components support developing applications on the
Grid without taking all the technical details of the particular platform type into
account (network communication, heterogeneity, etc.). The GCM enables a hier-
archical composition of program pieces and HOCs enable the reuse of component
code in the development of new applications by specifying application-specific
operations in a program via code parameters. When a programmer is provided,
e. g. , with a compute farm HOC, only the independent worker tasks must be
described. But, once an application exhibits data or control dependences, the
trivial farm is no longer sufficient. Here, the power of loop parallelization tools,
like LooPo, comes into play: by embedding LooPo into a HOC, we show that
these two technologies in combination facilitate the automatic transformation of
a sequential loop nest with complex dependences (supplied by the user as a HOC
parameter) into an ordered task graph, which can be processed on the Grid in
parallel. This technique can significantly simplify GCM-based systems which
combine multiple HOCs and other components. We use an equation system
solver based on the successive overrelaxation method (SOR) as our motivating
application example and for performance experiments.

Keywords: Higher-Order Components (HOCs), Loop Parallelization,
GCM, Grid Programming
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1. Introduction

We demonstrate the benefits of using software components together with loop
parallelization techniques for Grid programming. In recent years, component
technology [22] has reached wide-spread acceptance for the development of
large-scale distributed software infrastructures. Almost no project that requires
an interconnection of multiple resources, e. g. , databases, compute clusters and
Web clients, is started from scratch anymore. Developers rather rely on modern
component frameworks, which provide them with reusable implementations of
the functionality needed for their applications. This approach to code reuse
goes much further than traditional libraries, since frameworks usually provide
not only executable code but also the required configuration (i. e. , setup de-
scriptions, typically in the form of XML files) for deploying the components in
the target context. This context may be, e. g. , a middleware like Globus [19] for
interconnecting multiple components and remote clients, across the boundaries
of heterogeneous hardware and software.

In the CoreGRID community [24], the Grid Component Model GCM [16] has
recently become the commonly agreed reference specification of software com-
ponents for the Grid. The GCM combines efforts of multiple CoreGRID part-
ners, e. g. , the GCM predecessor Fractal [1] whose principle of hierarchical
composition has been adopted, the ProActive library [3] for asynchronous com-
munication among components, and Higher-Order Components (HOCs [17])
that accept as input not only data but also pieces of code supplied via an Internet
connection.

For assisting programmers in building parallel applications of Grid compo-
nents, this work combines HOCs with the automatic loop parallelization tool
LooPo [7]. The idea is to apply the LooPo loop parallelization mechanism to
HOC parameters, i. e. , code pieces supplied to a HOC as parameters. These
parameters often carry a loop nest to be executed by some worker hosts (i. e. ,
any free processing nodes) in the Grid. A typical example is the Farm-HOC,
implementing the popular master/worker pattern for running a set of indepen-
dent tasks [17]. The original Farm-HOC is not able to deal with inter-task
dependences: they would make it necessary either to design a new HOC which
takes the dependences into account or to remain with a sequential, less effi-
cient solution. Instead of requiring the developer to build one new HOC per
possible dependence pattern, we suggest a more flexible component, called
LooPo-HOC, which embeds the LooPo loop parallelizer [20].

Dependences in code parameters of the LooPo-HOC in the form of nested
loops are automatically resolved: code parameters (the loop nests) are trans-
formed into an ordered task graph. The processing pattern employed by the
LooPo-HOC can be viewed as an adapted farm whose master schedules the
tasks as specified by this graph.
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In our previous work, we suggested to combine HOCs with LooPo [13] and
discussed a farm implementation version for processing task graphs [18]. This
paper presents the implemetation of the LooPo-HOC plus application examples
and performance experiments.

HOCs use a Web service-based code transfer technology that extends the
Globus middleware [19] by the Code Service and the Remote Code Loader

(both are available open-source, within the scope of the Globus incubator project
HOC-SA [15], see Fig. 1). The Code Service and Remote Code Loader can be
viewed as an add-on to the Globus Resource Allocation Manager WS GRAM [10].
Their purpose is facilitating software components, which hold the code for solv-
ing recurring problems and expect the user to supply only application-specific
code pieces via the network. The Code Service and the Remote Code Loader
support the transfer of such code pieces across the network [12]. In contrast,
programmers using only GRAM are supposed to transfer their programs on
the whole rather than in pieces, which limits the potential of code reuse in
component-based software architectures.

The structure of the paper is as follows. In Section 2, we introduce the LooPo-
HOC: Section 2.1 introduces the mwDependence service which implements our
adapted version of the master/worker processing pattern, for executing ordered
task graphs (taking dependences into account). Section 2.2 explains the auto-
matic parallelization mechanism of LooPo. Section 2.3 describes the challenges
of integrating LooPo into a Grid-aware component and how we addressed them
in the LooPo-HOC. Section 2.4 shows how the internal workload monitor of the
LooPo-HOC works. Section 3 introduces an example application: the parallel
SOR system solver. Performance measurements are presented in Section 4, and
we draw the conclusions from our work in Section 5.

compute farmmaster server 

Web service

for(i = 0; i < 100; ++i)  {

  for(j = 0;  j < 70;  j += 3)  {
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Figure 1. General setup of the LooPo-HOC in the HOC-SA
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2. Implementation of the LooPo-HOC

The LooPo-HOC is composed of LooPo itself for transforming code (Sec-
tion 2.2), the Web service for clients to connect (Section 2.3), controller software
for task queue management and workload monitoring (Section 2.4), and an in-
ternal farm implementation for running the actual application tasks. These parts
are available to the client via a single Web service, as shown in Fig. 1.

2.1 The Internal Compute Farm of the LooPo-HOC

To explain how the compute farm in the LooPo-HOC works, let us briefly re-
call the functionality of the Farm-HOC [17] and explain the setup shown Fig. 1:
clients upload (sequential) application code to a central Web service. This ser-
vice is provided by the master server which stores the code at the Code Service
where it is assigned a key and saved in a database (using OGSA-DAI [25]).
Clients can send the master a request to reload the code and run it on multiple
remote worker nodes for processing data in parallel. The master controls the
distributed computations without requiring the user to be aware about the num-
ber of involved workers and the (Web service-based) communication between
itself and the workers.

The compute farm in the LooPo-HOC differs from a common compute farm
implementation for Grids [2] in two ways:

1 the LooPo-HOC embeds, besides a farm of workers, the LooPo tool and
uses it for ordering tasks in the form of a task graph taking dependences
among tasks into account. The farm executes the tasks according to this
order, freeing the user from dealing with task dependences.

2 the communication does not rely on a single protocol, but to increase the
efficiency, a Web service is used only as the remote interface for supplying
input to the farm via an Internet connection. All internal communication
(between master and workers) is handled using a light-weight protocol,
specifically developed for this component which is a distributed, version
of MPI, supporting all the basic and most of the collective operations,
using only Java and TCP sockets [5].

The LooPo-HOC offers a universal farm implementation for Java code [2],
i. e. , this farm is capable of executing applications without dependences as well
(and has shown almost linear speedup in various experiments) It is included in
the open-source distribution of the HOC-SA [15] in the packagemwDependence.

The worker nodes in Fig. 1 are fully decoupled from each other, i. e. , they
need no communication between each other, and are supposed to run in a dis-
tributed environment. In the following, we describe in more detail the transfor-
mation process, the scheduling and the workload monitoring, which make up



Development Automatization with LooPo & HOCs 265

the core of the LooPo-HOC and which are supposed to run locally, on the same
server, ideally on a multiprocessor machine.

2.2 Transforming Loop Nests into Task Graphs

For the automatic parallelization of loop nests, LooPo uses a mathematical
model, the so-called polytope model [20]. In this model, affine linear expres-
sions are used to represent loop iterations, dependences and accesses to array
elements. LooPo is an implementation of various methods and tools for analyz-
ing a given loop program, bringing it into model representation and performing
a dependence analysis and the actual parallelization using integer linear pro-
gramming. The result of the code transformation done by LooPo is a task graph
in which groups of independent tasks are arranged in a sequence.

For the automatic parallelization of loop nests using LooPo, there are a
number of steps involved, as follows [18].

The first step is to analyze the input program and bring it into the polytope
model representation. This is done by analyzing the (affine linear) expressions
in loop bounds and array accesses. The resulting model consists of one so-
called index space per statement. The index space contains the coordinates,
i.e., the values of the loop variables, of all steps in which the statement is
executed. LooPo keeps track of all array accesses and computes the resulting
data dependences.

In the second step, we use mathematical optimization methods to compute
two piecewise affine functions: the schedule maps each computation to a logical
execution step, and the placement maps each computation to a virtual proces-
sor. The objective is to extract all available parallelism, independently of any
machine parameters, e. g. , the number of processors. The result of this step is
the so-called space-time mapping.

In order to adjust the granularity of parallelism to a level that is optimal for
task farming (our method for the distributed execution of the parallel tasks,
as discussed in Section 2.1), the tiling technique is used in the third step to
aggregate time steps and virtual processors into larger chunks, called tiles.

Each tile produced by LooPo represents a task for the LooPo-HOC and con-
tains the corresponding set of computation operations for the time steps and
virtual processors that were aggregated. Information about data dependences
between tasks is stored in the form of a task graph that is used by the master for
scheduling them, i. e. , to choose an order of execution between dependent tasks.
Thus, the master is responsible for arranging the execution order, whereas the
target processor for the execution can be determined using an advanced schedul-
ing system [11] to exploit task locality. In Grid environments which do not
provide a scheduling system with tunable policies (e. g. , KOALA [11]), users
of the LooPo-HOC can also directly adapt the master, such that the complete
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scheduling is handled there. This way, programmers can, e. g. , arrange chains
of tasks that should be executed on the same worker. For data dependences
between tasks that make the exchange of computed data elements necessary,
the master provides a method to join a new (dependent) task with a finished
task. This way, the dependent task is decoupled from its predecessor, gets the
updated data and is scheduled for execution.

2.3 Integration of the LooPo-HOC with the Middleware

Beside the workers (executing the single tasks, as described in Section 2.1)
and the master (running LooPo, as described in Section 2.2), the LooPo-HOC
comprises a Web service for remote access and a resource configuration for
maintaining the distributed application state (status data and intermediate re-
sults), as is typical in the Web Service Resource Framework (WSRF) [19].

While the service interface itself is stateless, the resources connected to it
(as configured in a setup file) hold their state (in the form of transient variables,
called resource properties in WSRF [19]) even past the scope/duration of a
session. The LooPo-HOC makes use of this feature, e. g. , for parallelizing a
loop nest and preserving the resulting task graph as a data record in a resource,
which can be referenced by a key and reused in multiple applications. Another
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Figure 2. Sequence Diagram for using the LooPo-HOC

feature, through which the LooPo-HOC benefits from the WSRF middleware,
is its support for asynchronous operations. While LooPo transforms loop nests,
the client can disconnect or even shut down. The LooPo-HOC can restore the
task graph from a former session, when the client sends it the corresponding
resource key. The LooPo-HOC uses two types of WSRF resources. For every
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code transformation request, one new resource instance (i. e. , transient storage)
for holding the resulting task graph is created dynamically. The other resource
is static (i. e. , instantiated only once and shared globally among all processes),
called monitor and explained in Section 2.4.

The task graph resources are instantiated following the factory pattern, re-
turning a unique remote reference (the resource key) to the client. As shown
in Fig. 2, the client sends the resource key on every communication with the
LooPo-HOC, which uses the key afterwards to retrieve the corresponding re-
source data (the task graph and intermediate results). Thus, a LooPo-HOC
server is not a single point of failure, but rather a service provider that permits
clients to switch between mirror hosts during a session.

2.4 Workload Monitoring in the LooPo-HOC

The transformation of loop nests into tasks graphs is a computation-intensive
operation, which is quite unusual for Web services: typically, a Web service
operation retrieves or joins some data remotely and terminates immediately.
Due to the asynchronous operations of the LooPo-HOC, the clients produce
processing load right after their requests are served, since this is, when the
code transformations begin (concrete time costs follow in Section 4).
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Figure 3. Workload Monitor

From the user’s viewpoint,
the asynchrony is advanta-
geous, since local application
activities are not blocked by the
code transformations running
remotely. However, when mul-
tiple users are connected to the
same LooPo-HOC server, the
workload must be restricted to
a certain (server-specific) max-
imum of concurrrent requests.
For this purpose, the LooPo-
HOC workload monitor (Fig. 3)
provides status information to
the clients.

The monitor consists of two parts, a fixed-size thread pool and a status map.
For every transformation, the LooPo-HOC first checks if an idle thread is avail-
able. If the thread pool is fully loaded, then the LooPo-HOC creates a new
transformation thread and adds it to the pool. The maximum threshold for the
thread pool is set by the server administrator and is usually equal to the num-
ber of CPUs of the hosting server. Once the number of executing threads has
reached this maximum, incoming requests are queued.
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The status map (shown bottom right in Fig. 3) is a structured data store,
used to keep track of the successive transformations. The client can read the
map by issuing an XPath query [9] to the monitor at any time. This feature
is useful when the client reconnects during a loop transformation. The map
also allows one application to execute the tasks resulting from transforming the
sequential loops submitted by another application: via the map, users can track
the status of transformations (and run the resulting tasks), even if they connect
to the LooPo-HOC for the first time (and, consequently, receive no automatic
notification about status updates). This scenario arises, e. g. , if the Web service
for connecting to the LooPo-HOC is deployed to multiple servers, allowing
clients to switch between hosts, when a connection fails or some host’s request
queue is full.

As future work, we are considering to use the workload monitor and the
status map, for automatically balancing workload: instead of queuing requests
that exceed some threshold, another server will take over the processing load.
Implementing load balancing this way is probably also an interesting case study
for on-demand deployment of HOCs and combining multiple code transfer
technologies [12].

3. Case Study: The SOR Equation System Solver

As an example application, we have implemented a solver for linear equation
systems, Aφ = b, using the successive overrelaxation method (SOR). The SOR
method works by extrapolating the Gauss-Seidel method [6], as shown in the
following iteration formula:
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aii
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−
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n
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(k)

j
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Here, vector φ(k) denotes the kth iterate, the aij are elements of the input ma-
trix A, and ω is called the relaxation factor which is reduced in each iteration,
until it declines below some tolerance. Roughly speaking, the SOR algorithm
computes weighted averages of iterations, leading to a triangular system of
linear equations, which is much simpler to solve than the original arbitrary sys-
tem. There is one control dependence in the SOR solver, i. e. , in each pair of
successive iterations the follow-up statement depends on its predecessor.

1: @LooPo("begin loop", "constants: m,n; arrays: a{n+1}")

2: for (int k = 1; k <= m; k++) {

3: for (int i = 2; i <= n - 1; i++) {

4: // average computation

5: a[i] = (a[i - 1] + a[i + 1]) / 2.0; ... } }

6: @LooPo("end loop")

Figure 4. The sequential code parameter
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To run this application in parallel on the Grid, the user supplies the LooPo-
HOC with the application name (here, SOR) and a sequential description of the
computations expressed in Java notation, as shown in Fig. 4. Any loop nest
(with metadata, as the delimiting annotations in lines 1 and 6) can be used as
input for the LooPo-HOC. The annotations have the purpose of delimiting the
code that is automatically parallelized. The parallelization itself is applied to
the Java source code using the steps from Section 2.2, resulting in a task graph.
First, a model of the input program is derived (Fig. 5). For the space-time
transformation, the following schedule θ and placement π were determined:
θ(k, i) = 2 ∗ k + i and π(k, i) = k.

For obtaining the task dependence graph, tiling is applied on the transformed
target program. Fig. 6 shows the representation of the transformed program after
tiling is applied using the same color tone for tiles that can be executed inde-
pendently. The final model is derived by joining each tile as a node into a graph
with every inter-tile dependence as a directed edge in that graph. From the

Figure 5. Input program (M=7, N=5) Figure 6. Program after tiling

task graph model representation, the LooPo-HOC generates three Java classes
as output which are stored in the Code Service [17]: SORMaster, SORData and
SORTask. The SORMaster holds the dependence graph (it implements the in-
terface SchTaskDependence from the mwDependenceService package) and
provides the join-method (required for distributing data to task groups; see
Section 2.2). SORData objects are used for buffering application data and the
SORTask class describes a single task (as an implementation of the execute

method from the interface mwDependenceService.UserTask).
Since these files comply with the interface definitions in the HOC-SA [15],

the user can directly load the three output files for parallel processing as code
parameters of the farm described in Section 2.1.

4. Experiments

Fig. 8 shows the computation times for matrices of different sizes using from
1 to 10 workers running on common 1.7 GHz PCs. We also experimented in a
more heterogeneous environment (and observed promising speedups), but here,
we only report the most regular results (for homogeneous workers), since these
results are the most comprehensible ones.
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The experimental environment was set up in a high-performing network
reaching a data throughput of approximately 3.4MBit/s. The strong time
decay in the left of Fig. 8 (from 1 to 3 workers) shows that especially the
adding of the first 2 workers leads to a strong performance improvement, as
compared to the sequential computation time. The corresponding efficiency
values support this assumption: for 3 workers, the efficiency was above 80%
and for 2 workers even around 90% in multiple measurements.

The decline of the plane along the z axis (matrix size) shows that using more
than 5 workers is only profitable for large matrices, while, for the 100K×200K
matrix there are not enough tasks (using a 5 × 5 tiling [18]) to take advantage
of more than 4 workers.

Figure 7. Computation Times Figure 8. Initialization Times

The eight bars in Fig. 9 represent the initialization times for 10 workers (i. e.
the time that passes by after the client sends a request, until the remote com-
putations in the farm start). The time required to establish an ssh connection
between the master and all workers varied between 4 and 5 seconds. As can
be observed by comparing the bars in the front row and the back row, there is
no correspondence between the time required to connect and the full initializa-
tion time (including the remote code loading), which exhibits strong variations
between 30 and 90 seconds (the standard deviation σ from the mean value of
50 seconds was 22). This is due to the connection between the farm and the
database: as explained in Section 2.1, the farm workers load the code for pro-
cessing the single tasks from the Code Service using OGSA-DAI [25], which
is known to deliver unreliable performance under certain conditions, especially
when it is deployed on a single server together with other Web services [14].
In relation to the much longer computation times of the SOR application (from
several minutes to several hours for large matrices), the initialization time can,
thus, be disregarded. It should also be noted that the initialization is only per-
formed once per worker and application. After the first set of input data (a
matrix in the SOR example) has been processed, the same parallel code is used
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to process any number of successive inputs without repeating its generation
(using LooPo) and its transfer from the Code Service to the workers.

The transformation of the single loop nest used in the SOR example in Sec-
tion 3 takes approximately 1 min on a contemporary dual-core PC, utilizing
50% of its overall CPU capacity. From this quick increase of computational
load, we conclude that, if only one server is used to run the code transformations
in multiple different applications of the LooPo-HOC, this machine should be a
powerful multiprocessor server.

5. Conclusion

The idea of using LooPo for transforming the code parameters of a HOC
was suggested in an earlier paper [13] and a prototype of such a component was
tested for local area networks [5]. By now, the implementation of a Grid-aware
version, called LooPo-HOC, has been completed and extended on the server
side: instead of a farm, that supports only dependence-free applications, the dis-
tributed master/worker implementation, described in Section 2.1, now provides
a distributed environment for Java programs that is capable of processing depen-
dent tasks using a task graph scheduler. Using the LooPo-HOC, the treatment of
dependences becomes fully transparent, i. e. , the Grid application programmer
is no more responsible for scheduling independent task groups [13], but there
is an internal scheduler in the master.

Using the SOR program from Section 3 as an example, we have shown that
the LooPo-HOC provides a promising scalability and the time needed for the
initial code transformations does not critically impact the overall application
performance.

Another approach to automating the generation of parallel code was de-
veloped within the recent research on OpenMP programs and reparallelizing

them for the Grid [8]. This work also covers Java programs and the use of dis-

tributed shared memory (DSM) for data exchange among tasks, but still requires
from programmers dependence-free input and the explicit declaration of par-
allel loops via OpenMP directives. The LooPo-HOC, on the contrary, offers a
fully transparent programming interface that requires only sequential code. The
required data sharing could have been implemented using Sun’s standardized
DSM implementation in JavaSpaces [4]. However, the LooPo-HOC requires
only the joining of single tasks and no support for distributed transactions, and,
thus, relies on a more light-weight implementation [5], which provides much
better performance.

The LooPo-HOC (including the source code) can be downloaded from the In-
ternet as a part of the HOC-SA Globus incubator project [15]. It is interoperable
with any other Globus-based Grid software. For integrating the presented par-
allelization technique into the GCM, the task graph may also be included into an
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automatic manager in the membrane of a GCM component [16]. The suggested
combination of components with loop parallelization is not only useful for the
GCM, but also for other popular component models, such as CCA [23] and
CCM [21]. Beside the code transfer mechanism used by HOCs [12], no other
special features of this component technology are required.
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Abstract Distributed Hash Tables (DHTs) provide scalable mechanisms for implementing
resource discovery services in structured Peer-to-Peer (P2P) networks. However,
DHT-based lookups do not support some types of queries that are fundamental in
several classes of applications. A way to support arbitrary queries in structured
P2P networks is implementing unstructured search techniques on top of DHT-
based overlays. This approach has been exploited in the design of DQ-DHT,
a P2P search algorithm that combines the Dynamic Querying (DQ) technique
used in unstructured networks with an algorithm for efficient broadcast over a
DHT. Similarly to DQ, DQ-DHT dynamically adapts the search extent on the
basis of the desired number of results and the popularity of the resource to be
found. Differently from DQ, DQ-DHT exploits the structural constraints of the
DHT to avoid message duplications. The original DQ-DHT algorithm has been
implemented using Chord as basic overlay. In this paper we focus on extending
DQ-DHT to work in k-ary DHT-based overlays. In a k-ary DHT, broadcast
takes only O(log

k
N) hops using O(log

k
N) pointers per node. We exploit this

“k-ary principle” in DQ-DHT to improve the search time with respect to the
original Chord-based implementation. This paper describes the implementation
of DQ-DHT over a k-ary DHT and analyzes its performance in terms of search
time and generated number of messages in different configuration scenarios.
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1. Introduction

Distributed Hash Tables (DHTs) provide scalable mechanisms for imple-
menting resource discovery services in structured Peer-to-Peer (P2P) networks.
Structured P2P systems like Chord [1] use a DHT to assign to each node
the responsibility for a specific part of the resources in the network. When
a peer wishes to find a resource with a given key, the DHT allows to locate the
node responsible for that key typically in O(log N) hops using only O(log N)
neighbors per node.

As compared to unstructured search techniques like flooding or random
walks, DHT-based lookups have significant scalability advantages in terms of
both search time and network traffic [2]. However, DHT-based lookups do not
support arbitrary types of queries (e.g., regular expressions [3]) since it is in-
feasible to generate and store keys for every query expression. On the other
hand, unstructured systems can do it effortless since all queries are processed
locally on a node-by-node basis [4].

A way to support arbitrary queries in structured P2P networks is implement-
ing unstructured search techniques on top of DHT-based overlays. Following
this approach, an unstructured search method can be implemented over the
DHT to distribute the query to as many nodes as needed. The query can then
be processed on a node-by-node basis as in unstructured systems. In this way,
the DHT can be used for both key-based lookups and arbitrary queries, com-
bining the efficiency of structured networks with the flexibility of unstructured
search.

The approach above has been exploited in the design of DQ-DHT [5], a P2P
search algorithm that combines the Dynamic Querying (DQ) technique used
in unstructured networks [6], with an algorithm for efficient broadcast over a
DHT [7].

The goal of DQ is to reduce the traffic generated by the search process in
unstructured P2P networks. The query initiator starts the search by sending
the query to a few of its neighbors and with a small Time-to-Live (TTL). The
main goal of this first phase (referred to as “probe query”) is to estimate the
popularity of the resource to be found. If such an attempt does not produce
a sufficient number of results, the search initiator sends the query towards the
next neighbor with a new TTL. Such TTL is calculated taking into account both
the desired number of results, and the resource popularity estimated during the
previous phase. This process is repeated until the expected number of results
is received or all the neighbors have already been queried.

Similarly to DQ, DQ-DHT dynamically adapts the search extent on the basis
of the desired number of results and the popularity of the resource to be located.
Differently from DQ, DQ-DHT exploits the structural constraints of the DHT
to avoid message duplications. Performance results presented in [5] show that
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DQ-DHT generates much less network overhead than the enhanced DQ algo-
rithm proposed in [8], with a comparable - and in some cases better - search
time, and with a higher success rate.

The original DQ-DHT algorithm has been implemented using Chord as ba-
sic overlay. In this paper we focus on extending DQ-DHT to work in k-ary
DHT-based overlays [9]. In a k-ary DHT, broadcast (as well as lookup) takes
only O(logk N) hops using O(logk N) pointers per node. We exploit this “k-
ary principle” in DQ-DHT to improve he search time with respect to the orig-
inal Chord-based implementation. This paper describes the implementation of
DQ-DHT over a k-ary DHT and analyzes its performance in terms of search
time and number of messages in different configuration scenarios.

The remainder of the paper is organized as follows. Section 2 briefly de-
scribes the original DQ-DHT algorithm. Section 3 describes the implementa-
tion of DQ-DHT on top of k-ary DHT-based overlays. Section 4 discusses the
algorithm performance. Finally, Section 5 concludes the paper.

2. Dynamic Querying over a DHT

Dynamic Querying over a DHT (DQ-DHT) uses a combination of the DQ
technique described above with an algorithm for efficient broadcast over DHTs
proposed in [7]. In this section we first describe how the algorithm of broad-
cast over a DHT works, and then we briefly describe the original DQ-DHT
algorithm.

2.1 Broadcast over a DHT

We describe the Chord-based implementation of the broadcast algorithm,
as it is presented in [7]. Chord assigns to each node an m-bit identifier that
represents the position of the node in a circular identifier space, ranging from
0 and 2m − 1. Each node, x, maintains a finger table with m entries. The jth

entry in the finger table at node x contains the identity of the first node, s, that
succeeds x by at least 2j−1 positions on the identifier circle, where 1 ≤ j ≤ m.
Node s is called the jth finger of node x.

If the identifier space is not fully populated (i.e., the number of nodes, N , is
lower than 2m), the finger table contains redundant fingers. In a Chord network
of N nodes, the number u of unique (i.e., distinct) fingers of a generic node
x is likely to be log2 N [1]. In the following, we will use the notation Fi to
indicate the ith unique finger of node x, where 1 ≤ i ≤ u.

To perform the broadcast of a data item D, a node x sends a Broadcast
message to all its unique fingers. The Broadcast message contains D and
a limit argument, which is used to restrict the forwarding space of a receiving
node. The limit sent to Fi is set to Fi+1, for 1 ≤ i ≤ u − 1. The limit sent to
the last unique finger, Fu, is set to the identifier of the sender, x.
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When a nodes y receives a Broadcast message with a data item D and
a given limit, it is responsible for forwarding D to all its unique fingers in the
interval ]y, limit[. When forwarding the message to Fi, for 1 ≤ i ≤ u − 1, y

supplies it a new limit, which is set to Fi+1 if it does not exceed the old limit,
to the old limit otherwise. As before, the new limit sent to Fu is set to y.

As shown in [7], in a network of N nodes, a broadcast message originating
at an arbitrary node reaches all other nodes after exactly N − 1 messages, with
log2 N steps. The overall broadcast procedure can be viewed as the process
of passing the data item through a spanning tree that covers all nodes in the
network. As an example, Figure 1 shows the spanning tree corresponding to
the broadcast initiated by Node 0 in a fully populated Chord network with
N = 64 nodes.

Figure 1. Spanning trees corresponding to the broadcast initiated by Node 0 in a fully popu-
lated Chord network with N = 64.

2.2 DQ-DHT algorithm

The DQ-DHT algorithm works as follows. Let x be the node that initiates
the search, U the set of unique fingers not yet visited, and Rd the desired
number of results. Initially U includes all unique fingers of x. Node x starts by
choosing a subset V of U and sending the query to all fingers in V (this phase
corresponds to the “probe query” of DQ). These fingers will in turn forward
the query to all nodes in the portions of the spanning tree they are responsible
for, following the broadcast algorithm described above. When a node receives
a query, it checks for local items matching the query criteria and, for each
matching item, sends a query hit directly to x. The fingers in V are removed
from U to indicate that they have already been visited.

After sending the query to all nodes in V , x waits for an amount of time
TL, which is the estimated time needed by the query to reach all nodes, up to
a given level L, of the subtrees rooted at the unique fingers in V , plus the time
needed to receive a query hit from those nodes. Then, if the current number of
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received query hits Rc is equal or greater than Rd, x terminates. Otherwise, an
iterative procedure takes place.

At each iteration, node x: 1) calculates the item popularity P as the ratio
between Rc and the number of nodes already theoretically queried; 2) calcu-
lates the number Hq of hosts in the network that should be queried to hit Rd

query hits based on P ; 3) chooses, among the nodes in U , a new subset V ′ of
unique fingers whose associated subtrees contain at least Hq nodes; 4) sends
the query to all nodes in V ′; 5) waits for an amount of time needed to propagate
the query to all nodes in the subtrees associated to V ′.

The iterative procedure above is repeated until the desired number of query
hits is reached, or there are no more fingers to contact. Note that, if the item
popularity is properly estimated after the probe query, only one additional iter-
ation may be sufficient to obtain the desired number of query hits.

A key point in the implementation of DQ-DHT is estimating the properties
of the spanning tree associated to the broadcast process. This can be done
easily by observing that the spanning tree associated to the broadcast over a
Chord network is - in the ideal case - a binomial tree [10] (see Figure 1). The
basic properties of binomial trees can therefore be used to calculate with good
approximation the number of nodes present in the different subtrees, and at
different levels, of the spanning tree associated to the broadcast process, as
shown in [5]. These values can be in turn used to calculate the number of
nodes already theoretically queried, or to be queried, during the iterative DQ
process described above.

3. Dynamic Querying over a k-ary DHT

In a k-ary DHT, pointers are placed to achieve a time complexity of
O(logk N), where N is the number of nodes in the network and k is some
predefined constant. This is referred to as doing k-ary lookup or placing point-
ers according to the “k-ary principle” [9].

Let M = km be the size of the identifier space, for some positive integer m.
To achieve k-ary lookup, each node x keeps np = (k − 1) × m pointers (or
fingers) in its finger table. Each of these fingers can be chosen to be the first
node that succeeds the start of every interval f(j), where f(j) = (x + c) mod

M , and c = (1+((j −1) mod (k−1)))×k
⌊

j−1

k−1
⌋, for 1 ≤ j ≤ np. For k = 2,

it is easy to prove that intervals coincide with those of Chord. If the identifier
space is not fully populated (i.e., N < M ), the finger table contains redundant
fingers. In a network of N nodes, the number u of unique fingers of a generic
node x is likely to be (k − 1) × logk N .

The broadcast algorithm described in Section 2.1, which is exploited by
DQ-DHT as described in Section 2.2, can also be used in a k-ary DHT. In such
case, the whole broadcast process takes only O(logk N) hops.
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This can be illustrated as in Section 2.1 using a spanning tree view to repre-
sent the broadcast process over a k-ary DHT. As an example, Figure 2 shows
the spanning tree corresponding to the broadcast initiated by Node 0 in a fully
populated k-ary DHT with k = 4 and N = 64.

Figure 2. Spanning trees corresponding to the broadcast initiated by Node 0 in a fully popu-
lated k-ary DHT with k = 4 and N = 64.

By comparing Figure 1 with Figure 2, it can be noted that the number of
hops (that is, the depth of the spanning tree) needed to complete the broadcast
in a k-ary DHT with N = 64 nodes passes from 5 with k = 2 (i.e., with
Chord), to 3 with k = 4. We exploit this principle by extending DQ-DHT to
improve the search time with respect to the original Chord-based implementa-
tion.

3.1 Properties of the spanning tree associated to the
broadcast over a k-ary DHT

As DQ-DHT iteratively calculates the number of nodes already theoretically
queried, as well as the number of nodes that must be queried to reach the
desired number of results, we need to estimate the number of nodes in the
different subtrees, and at different levels, of the spanning tree associated to the
broadcast process.

Since for k 6= 2 the resulting spanning tree is no more a binomial tree, we
experimentally generalized the formulas presented in [5] to be applicable to
the broadcast over a k-ary DHT, for any fixed k. Table 1, in particular, shows
how we calculate the properties of the spanning tree associated to the broadcast
process in case of fully populated identifier space.

To verify the validity of the formulas in case of not fully populated identifier
spaces, we employed a network simulator (the same used for the performance
evaluation presented in Section 4). Through the simulator we built several ran-
dom k-ary DHT overlays with different values of k, and compared the real
properties of the broadcast spanning tree with the values computed using the
formulas in Table 1. The results of such experiments are summarized in Fig-
ure 3.
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Table 1. Properties of the spanning tree rooted at a node with u unique fingers F1..Fu in a
fully populated k-ary DHT.

Notation Description Value

Ni Number of nodes in the subtree rooted at Fi, for 1 ≤ i ≤ u N/(k(⌊
u−i

k−1
⌋+1))

Di Depth of the subtree rooted at Fi, for 1 ≤ i ≤ u logk Ni

N l

i

Number of nodes at level l of the subtree rooted at Fi, for
1 ≤ i ≤ u and 0 ≤ l ≤ Di

(

Di

l

)

× (k − 1)l
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Figure 3. Comparison between computed and real values of Ni and N l

i for different values
of k, i and l, in a simulated k-ary DHT with N = 20000 and m = 20. Lines represent the
computed values. Single points with error bars represent the real values. The error bars of the
real values represent the standard deviations from the mean, obtained from 100 simulation runs.
All values of Ni and N l

i are computed or measured from nodes with the following values of u:
15 for networks with k = 2; 18 for k = 3; 24 for k = 5; 32 for k = 8.

Figure 3a compares computed and real (i.e., measured) values of Ni for dif-
ferent values of i, in a k-ary DHT with 20000 nodes and m = 20, considering
the following values of k: 2, 3, 5, and 8. As shown by the graph, the means
of the real values (represented as points) are very close to the computed values
(represented as lines) for any value of i and k.

The graph in Figure 3b considers again a k-ary DHT with N = 20000 and
m = 20, but with k fixed to 3, and compares computed and real values of N l

i

for different values of i, with l ranging from 1 to 4. As before, the mean of the
real values resulted very close to the computed values for any value of i and l.

In summary, the experimental results demonstrate that the formulas in Ta-
ble 1 can also be used to estimate - with high accuracy - the properties of the
spanning tree associated to the broadcast process in not fully populated k-ary
DHTs.
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3.2 Minor modifications to the original DQ-DHT
algorithm

The original DQ-DHT algorithm [5] works correctly over a k-ary DHT us-
ing the formulas defined in Section 3.1. In particular: i) the N l

i
formula is

used during the probe query to calculate the number of nodes theoretically
queried after a predefined amount of time (which corresponds to the number
of nodes up to a given depth in the subtrees rooted at the fingers queried dur-
ing the probe phase); ii) the Ni formula is used both to calculate the number
of nodes already theoretically queried (given the set of unique fingers already
contacted), and to choose a new subset of unique fingers to contact based on
the theoretical number of nodes to query.

Even if the original DQ-DHT algorithm works properly for any value of
k, we slightly modified it to obtain a more uniform comparison of its perfor-
mance when different values of k are used. The difference between the original
version and the new one is explained in the following.

As discussed in Section 2.2, to perform the probe query the original algo-
rithm needs two parameters : 1) the initial value of V , which is the first subset
of unique fingers to which the query has to be sent to; and 2) L, the last level of
the subtrees associated to V from which to wait a response before to estimate
the resource popularity.

In the k-ary version, we replaced the two parameters above with the fol-
lowing: 1) HP , defined as the number of hosts that will receive the query as
a result of the probe phase; 2) HE , the number of hosts to query before to
estimate the resource popularity.

Given HP and the set U of unique fingers of the querying node, the algo-
rithm calculates the initial set V of unique fingers to contact as the subset of
U whose associated subtrees have the minimum number of nodes greater or
equal to HP . In other terms, in the original algorithm the fingers to contact
during the probe query are chosen explicitly, whereas in the k-ary version they
are selected automatically based on the value of HP .

While HP indicates the total number of nodes in the subtrees that will be
flooded as a result of the probe phase, HE is the minimum number of nodes that
must have received the query before to estimate the resource popularity (HE ≤
HP ). Given HE and the initial set V (calculated through HP ), the algorithm
calculates the minimum number L of levels of the subtrees associated to V that
contain a number of nodes greater or equal to HE . Therefore, HE is used in
the k-ary version as an indirect way of specifying the value of L.

Since HP and HE are independent from the actual number of unique fingers
and from the depth of the corresponding subtrees, their use allows to compare
the algorithm performance using different values of k, independently from the
number of pointers per node they produce in the resulting overlay.
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4. Performance evaluation

We evaluated the performance of the algorithm using a discrete-event sim-
ulator. Two performance parameters have been evaluated: the number of mes-

sages and the search time. The first parameter is the total number of messages
generated during the search process, while the second parameter is the time
needed to receive the desired number of results.

The network parameters are: the number of nodes in the network, N , and
the resource replication rate, r, defined as the ratio between the total number
of resources satisfying the query criteria and N . The algorithm parameters are:
HP and HE , introduced in the previous section, and Rd, which is the desired
number of results.

We performed all the tests in a random network with N = 50000 nodes
and a value of r ranging from 0.25 % to 32 %. Different combinations of
the HP and HE have been experimented, while Rd was fixed to 100. All the
results presented in the following have been calculated as an average of 100
independent simulation runs, where at each run the search is initiated by a
randomly chosen node.

We run a first set of simulations in a k-ary DHT with k = 2 (i.e., a Chord
network), with HP fixed to 2000, and HE ranging from 250 to 2000. The goal
of these first experiments was evaluating the behavior of the algorithm (i.e.,
number of messages and search time) varying the number HE of nodes that
have received the query before to estimate the resource popularity.

The graphs in Figure 4 show number of messages and search time in func-
tion of the replication rate. The search time is expressed in time units, where
one time unit corresponds to the average time to pass a message from node to
node.
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Figure 4. Effect of varying the value of HE , with HP = 2000 and k = 2: (a) number of
messages; (b) search time.
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As expected, Figure 4a shows that the number of messages decreases as
the replication rate increases, for any value of HE . In general, the number of
messages is lower for higher values of HE . In fact, the generated number of
messages depends on the accuracy of the popularity estimation, which is better
when HE is higher. This is particularly true in presence of low replication
rates. For example, the number of messages for r = 0.5 % passes from 25889
with HE = 2000, to 31209 with HE = 250.

As shown by Figure 4b, also the search time decreases as the replication rate
increases. Moreover, the search time decreases as the value of HE decreases,
since lower values of HE correspond to a lower duration of the probe query.
For instance, the search time for r = 0.5 % passes from 29.58 with HE =
2000, to 22.53 with HE = 250. However, since lower values of HE generate
more messages, an intermediate value of HE should be preferred. For example,
HE = 1000 represents a good compromise since it generates the same number
of messages of HE = 2000, but with a search time close to that of HE = 250.

Then, we compared the performance of the algorithm with different values
of k. Based on the first set of simulations, we chosen the following algorithm
parameters: HP = 2000 and HE = 1000. Figure 5 shows how number of
messages and response time vary in this configuration with k ranging from 2
to 8.
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Figure 5. Effect of varying the value of k, with HP = 2000 and HE = 1000: (a) number of
messages; (b) search time.

As shown by Figure 5b, the search time strongly depends on the arity of the
DHT. The maximum gain (nearly 48 %) is obtained for r = 0.5 %, with the
search time passing from 24.46 with k = 2, to 12.74 with k = 8. The minimum
gain (20 %) is obtained for the highest replication rate (r = 32 %), when the
search time passes from 5.02 with k = 2, to 4.0 with k = 8. The number of
messages is less related to the value of k than the search time (see Figure 5a),
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but - in general - lower values of k generate lower number of messages. The
maximum difference between k = 2 and k = 8 is reached with r = 0.5 %
(about 14 %), but it is counterbalanced by a search time gain of 48 %, as
shown in Figure 5b.

We repeated the comparison above using the following configuration:
HP = 4000 and HE = 2000. Since HP is the minimum number of mes-
sages that will be generated during the search process, a so high value should
be used when it is fundamental to minimize the search time. The simulation
results are reported in Figure 6.

 0

 10000

 20000

 30000

 40000

 50000

321684210.50.25

N
u
m

b
e
r 

o
f 
m

e
s
s
a
g
e
s

Replication rate (%)

N=50000, Rd=100, HP=4000, HE=2000

k=2
k=3
k=4
k=5
k=6
k=7
k=8

 0

 5

 10

 15

 20

 25

 30

321684210.50.25

S
e
a
rc

h
 t
im

e
 (

ti
m

e
 u

n
it
s
)

Replication rate (%)

N=50000, Rd=100, HP=4000, HE=2000

k=2
k=3
k=4
k=5
k=6
k=7
k=8

(a) (b)

Figure 6. Effect of varying the value of k, with HP = 4000 and HE = 2000: (a) number of
messages; (b) search time.

The trends are similar to those shown in Figure 6. In general, the search time
is lower of 1-2 units w.r.t. that measured for HP = 2000 and HE = 1000. For
r = 4 %, the search time is significantly improved because the probe query,
with HP = 4000, resulted in most cases sufficient to obtain the desired number
of results.

In summary, the simulation results presented above demonstrate that imple-
menting DQ over a k-ary DHT allows to achieve a significant improvement of
the search time with respect to a Chord-based implementation.

5. Conclusions

Implementing unstructured search techniques on top of DHT-based overlays
is an efficient way to support arbitrary queries in structured P2P networks.
This approach has been followed in the design of DQ-DHT [5], a P2P search
algorithm that combines the DQ technique used in unstructured networks with
an algorithm for efficient broadcast over DHTs.

The original DQ-DHT algorithm has been implemented using Chord as ba-
sic overlay. This paper focused on extending DQ-DHT to work in k-ary DHT-
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based overlays [9]. As demonstrated by the experimental results presented
in this paper, the “k-ary principle” allowed DQ-DHT to achieve a significant
improvement of the search time with respect to the original Chord-based im-
plementation.

DQ over a DHT can be effectively used to implement resource discovery
services in large distributed environments, as demonstrated by the DQ-based
Grid resource discovery system proposed in [11]. The k-ary DQ-DHT algo-
rithm proposed in this paper could be therefore used to implement a more
efficient version of that Grid system. Another application of this work could
be adding the capability to perform DQ search to existing distributed k-ary
systems like DKS [12].
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